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Abstract
Basic aspects of quantum entanglement are illustrated in connection with the
two-component wavefunction description of spin-1/2 particles. In particular,
the time evolution of entanglement in the Stern–Gerlach experiment is analysed
in detail.

1. Introduction

Quantum entanglement [1–9] has been the focus of intense research efforts in recent years
[10–21]. There is a general consensus that quantum entanglement constitutes one of (if not
the) most representative aspects of quantum mechanics. A state of a composite quantum
system is called ‘entangled’ if it cannot be represented as a mixture of factorizable pure
states. Otherwise, the state is called separable. The above definition is physically meaningful
because entangled states (unlike separable states) cannot be prepared locally by acting on
each subsystem individually [10]. Quantum entanglement can be regarded as a physical
resource, which is associated with the peculiar non-classical correlations that are possible
between separated quantum systems. Entanglement lies at the basis of important quantum
information processes [11–13] such as quantum teleportation [14], superdense coding [15]
and quantum computation [16, 17]. The experimental implementation of these processes
may lead to a deep revolution in both the communication and computational technologies.
Besides its possible practical applications, the study of quantum entanglement is of great
importance in its own right. It constitutes an essential ingredient for a proper understanding of
several fundamental aspects of physics, ranging from the quantum mechanical aspects of the
second law of thermodynamics to the theory of quantum measurement, and the emergence of
a ‘classical world’ from a quantum mechanical background.

In spite of being at the heart of quantum mechanics, a discussion of quantum entanglement
is still lacking from standard quantum mechanics textbooks. Most of them do not even mention
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the word ‘entanglement’ in their subject indexes [22–27] (for recent notable exceptions see
[28, 29]). The aim of the present contribution is to illustrate some basic aspects of quantum
entanglement in connection with a subject that is normally included in standard university
courses and textbooks on quantum mechanics: the discussion of the kinematics and dynamics
of spin-1/2 particles using two-component wavefunctions. Quantum entanglement arises from
the tensor product structure of the Hilbert space describing composite quantum systems. This
tensor product structure is also present when one deals with one system exhibiting various
degrees of freedom. This case was considered, for instance, by de la Torre in [3]. An
important example of a tensor product Hilbert space associated with a system with different
degrees of freedom is provided by a particle with spin. Indeed, the study of spin usually
constitutes the first encounter of quantum mechanics students with tensor product Hilbert
spaces. Consequently, textbook chapters on the two-component wavefunctions formalism
for spin-1/2 particles constitute appropriate places in which to incorporate an elementary
discussion of quantum entanglement. Accordingly, we address the following aspects of
entanglement: (i) the difference between separable and entangled states, (ii) a quantitative
measure of entanglement, and (iii) an illustration of the relevance of entanglement for quantum
mechanical measurement processes. This is done by recourse to a detailed analysis of the time
evolution of entanglement during the Stern–Gerlach experiment [30–34].

2. Spin-1/2 particles and entanglement

2.1. Two-component wavefunction

Let us consider a pure state of a spin-1/2 particle described by the state vector

|�〉 =
∫

d3r[f+(r)|r〉|+〉 + f−(r)|r〉|−〉], (1)

where f+(r) and f−(r) are complex-valued functions of the position vector r, and

|+〉 =
(

1

0

)
, |−〉 =

(
0

1

)
, (2)

are the eigenstates of the z-spin component operator Sz with eigenvalues +h̄/2 and −h̄/2,
respectively. The normalization of the state (1) is

〈�|�〉 =
∫

d3r|f+|2 +
∫

d3r|f−|2 = 1. (3)

Even if the complete state (1) of the particle is pure, the spin degrees of freedom and the
translational degrees of freedom are, when considered in their own right, described in general
by mixed states. In order to determine the states characterizing separately the spin and the
translational degrees of freedom, it is convenient to work with the density matrix associated
with the pure state (1), which reads

ρ̂ = |�〉〈�|
=

∫ ∫
d3r d3r ′[f+(r)|r〉|+〉 + f−(r)|r〉|−〉][f ∗

+ (r)〈r|〈+| + f ∗
−(r)〈r|〈−|], (4)

i.e.,

ρ̂ = |+〉〈+|
∫ ∫

d3r d3r ′f+(r)f ∗
+ (r′)|r〉〈r′| + |+〉〈−|

∫ ∫
d3r d3r ′f+(r)f ∗

−(r′)|r〉〈r′|

+ |−〉〈+|
∫ ∫

d3r d3r ′f−(r)f ∗
+ (r′)|r〉〈r′|

+ |−〉〈−|
∫ ∫

d3r d3r ′f−(r)f ∗
−(r′)|r〉〈r′|. (5)



Quantum entanglement, spin-1/2 and the Stern–Gerlach experiment 659

Now, the states characterizing ‘individually’ the spin and the position degrees of freedom are
given, respectively, by the partial traces of ρ̂ with respect to the spatial and spin variables. We
proceed now to evaluate the partial trace of ρ̂ over the position coordinates

ρ̂(S) = Trr(ρ̂). (6)

If we previously define |r, +〉 ≡ |r〉|+〉, 〈r, +| ≡ 〈r|〈+|, |r,−〉 ≡ |r〉|−〉, and 〈r,−| ≡
〈r|〈−|, its four matrix elements read

ρ̂(S)
++ = 〈+|ρ̂(S)|+〉 =

∫
d3r〈r, +|ρ̂|r, +〉

ρ̂
(S)
+− = 〈+|ρ̂(S)|−〉 =

∫
d3r〈r, +|ρ̂|r,−〉

ρ̂
(S)
−+ = 〈−|ρ̂(S)|+〉 =

∫
d3r〈r,−|ρ̂|r, +〉

ρ̂
(S)
−− = 〈−|ρ̂(S)|−〉 =

∫
d3r〈r,−|ρ̂|r,−〉.

(7)

It is clear that

ρ̂(S)
++ =

∫ ∫ ∫
d3r d3r ′ d3r ′′〈r′′|r〉〈r′|r′′〉f+(r)f ∗

+ (r′)

=
∫

d3r ′′f+(r′′)f ∗
+ (r′′)

=
∫

d3r|f+(r)|2. (8)

In an analogous fashion,

ρ̂
(S)
+− =

∫
d3rf+(r)f ∗

−(r)

ρ̂
(S)
−+ =

∫
d3rf−(r)f ∗

+ (r)

ρ̂
(S)
−− =

∫
d3rf−(r)f ∗

−(r)

=
∫

d3r|f−(r)|2.

(9)

Note that

Tr[ρ̂(S)] = ρ̂(S)
++ + ρ̂

(S)
−−

=
∫

d3r[|f+(r)|2 + |f−(r)|2]

= 1, (10)

and

ρ̂
(S)
+− = [

ρ̂
(S)
−+

]∗
. (11)

The marginal density matrix describing the spin variables can then be written as

ρ̂(S) = ρ̂(S)
++ |+〉〈+| + ρ̂

(S)
+−|+〉〈−| + ρ̂

(S)
−+|−〉〈+| + ρ̂

(S)
−−|−〉〈−|

= ρ̂(S)
++ |+〉〈+| + ρ̂

(S)
+−|+〉〈−| +

[
ρ̂

(S)
+−

]∗|−〉〈+| +
(
1 − ρ̂(S)

++

)|−〉〈−|. (12)
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2.2. Evaluating entanglement

Let |�AB〉 be a bipartite pure state and ρ̂A = TrB[|�AB〉〈�AB |] and ρ̂B = TrA[|�AB〉〈�AB |]
the marginal density operators for, respectively, the subsystems A and B. The amount of
entanglement E of the state |�AB〉 is given by the von Neumann marginal entropies [10]

E = S(ρ̂B) = S(ρ̂A). (13)

An essential property of entanglement is that the amount of entanglement does not change
under local unitary operations. That is, the amount of entanglement does not change under
the action of unitary operators of the form

U = UA ⊗ UB, (14)

where UA and UB are unitary operators acting, respectively, upon subsystems A and B. Let us
now consider a Hamiltonian of the form

H = HA ⊗ IB + IA ⊗ HB, (15)

where HA and HB act, respectively, on subsystems A and B, and IA,B are the identity operators
associated with each subsystem’s Hilbert space. The time evolution operator associated with
the Hamiltonian (15) is a local unitary operator,

U = exp[−iHt/h̄] = exp[−iHAt/h̄] ⊗ exp[−iHBt/h̄]. (16)

Consequently, the amount of entanglement does not change under the time evolution associated
with the Hamiltonian (15). The time evolution operator associated with a Hamiltonian of the
form

H = HA ⊗ IB, (17)

which is

U = exp[−iHt/h̄] = exp[−iHAt/h̄] ⊗ IB, (18)

is also local, and does not modify the amount of entanglement of the composite system. The
same, obviously, happens with a Hamiltonian of the form H = IA ⊗ HB .

The entanglement of the pure state |�〉 is given by the von Neumann entropy of the
marginal density matrix describing one of our two subsystems, say, that describing ‘spin’

E[|�〉] = −Tr[ρ̂(S) ln(ρ̂(S))]. (19)

Let {|0〉, |1〉} denote the eigenvectors of ρ̂(S). Also, let its eigenvalues be {λ0, λ1}. With these
quantities we can express |�〉 according to its Schmidt decomposition [4]

|�〉 =
∫

d3r[
√

λ0f0(r)|r〉|0〉 +
√

λ1f1(r)|r〉|1〉]. (20)

The functions f0(r) and f1(r) are, in general, different from f+(r) and f−(r) that we used
above. Of course,

f0(r) = 1√
λ0

〈r, 0|�〉, f1(r) = 1√
λ1

〈r, 1|�〉. (21)

In order to determine f0(r) and f1(r) one needs to

• build up ρ̂(S),
• diagonalize it so as to find {λ0, λ1}, |0〉, and |1〉,
• compute (21).
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The marginal density operator ρ̂(T )(r, r′),

ρ̂(T )(r, r′) = TrS[|�〉〈�|]
= 〈r, 0|ρ̂|r′, 0〉 + 〈r, 1|ρ̂|r′, 1〉
= λ0f0(r)f ∗

0 (r′) + λ1f1(r)f ∗
1 (r′), (22)

describes the translational part of our ‘composite’ system.
Remember that if Â is any Hermitian operator, {|i〉} its eigenvectors, and {ai} its

eigenvalues, then

Â =
∑

i

ai |i〉〈i|, (23)

and, for any analytical function f (x),

f (Â) =
∑

i

f (ai)|i〉〈i|, (24)

so that, in the case f (x) = x ln x, we have

Â ln Â =
∑

i

ai ln ai |i〉〈i|, (25)

and

−Tr{Â ln Â} = −
∑

i

ai ln ai. (26)

Thus,

E[|�〉] = −Tr[ρ̂(S) ln(ρ̂(S))] = −
1∑

i=0

λi ln λi. (27)

det(ρ̂(S) − λI) = det

(
ρ

(S)
++ − λ ρ

(S)
+−

ρ
(S)
−+ ρ

(S)
−− − λ

)
= 0, (28)

λ1,2 = 1

2
± 1

2

√
1 − 4 det(ρ̂(S)). (29)

2.3. One-dimensional Gaussian wave packets

We now consider states of a spin-1/2 particle (moving in one dimension) described by two
Gaussian wave packets,

f+(x) = αA+ exp[ik+(x − x+) − a2
+(x − x+)

2/2],

f−(x) = βA− exp[ik−(x − x−) − a2
−(x − x−)2/2],

(30)

with

A+ = 1

π1/4

√
a+, A− = 1

π1/4

√
a−, (31)

where a± � 0, k±, and x± are real constants. The quantities a± are related to the widths of
the wave packets through

a+ = 1

σ+
, a− = 1

σ−
. (32)
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The probability densities associated with the wave packets f±, |f+(x)|2 and |f−(x)|2 are
centred, respectively, at x = x+ and x = x−. Note that in this case, the normalization of the
state (1) implies that

|α|2 + |β|2 = 1. (33)

In what follows, we need the result∫ +∞

−∞
dx exp[c1x − c2x

2] = exp

(
c2

1

4c2

)√
π

c2
. (34)

We have to evaluate the spin density matrix elements,

ρ̂
(S)
LK =

∫ +∞

−∞
dxfL(x)f ∗

K(x) L = + or − K = + or −. (35)

One has

ρ̂(S)
++ = |α|2

ρ̂
(S)
−− = |β|2

ρ̂
(S)
+− = (

ρ̂
(S)
−+

)∗

= αβ∗ν exp(ξ) exp(iθ).

(36)

where

ν =
√

2a+a−√
a2

+ + a2−

ξ = − (k+ − k−)2 + a2
+a

2
−(x+ − x−)2

2
(
a2

+ + a2−
)

θ = (x− − x+)
(
a2

+k− + a2
−k+

)
(
a2

+ + a2−
) .

(37)

Now, from

det(ρ̂ − λI) =
∣∣∣∣∣ |α|2 − λ αβ∗ν exp(ξ) exp(iθ)

βα∗ν exp(ξ) exp(−iθ) |β|2 − λ

∣∣∣∣∣ = 0, (38)

one gets

λ1,2 = 1
2 ± 1

2

√
1 − 4|α|2|β|2[1 − ν2 exp(2ξ)]. (39)

For the case |α|2 = |β|2 = 1
2 we have

λ0 = 1

2
+

ν

2
exp(ξ), λ1 = 1

2
− ν

2
exp(ξ) (40)

while the associated eigenvectors are seen to be

|0〉 = 1√
2

(
exp(iθ)

1

)
, (41)

|1〉 = 1√
2

(
1

−exp(−iθ)

)
, (42)
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Figure 1. Entanglement E[|�〉]/ln(2), as a function of Q = (k+ − k−)2/4a2 (Q = (x+ −
x−)2a2/4), for a spin-1/2 particle’s wavefunction with both components of Gaussian form, with
α2 = β2 = 0.5, a+ = a− = a, and x+ = x− (k+ = k−). All depicted quantities are dimensionless.
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Figure 2. Entanglement E[|�〉]/ln(2), as a function of L = ln(a+/a−), for a spin-1/2 particle’s
wavefunction with both components of Gaussian form, with α2 = β2 = 0.5, x+ = x−, and
k+ = k−. All depicted quantities are dimensionless.

so that our entanglement E turns out to be

E[�] = −
[

1

2
+

ν

2
exp(ξ)

]
ln

[
1

2
+

ν

2
exp(ξ)

]
−

[
1

2
− ν

2
exp(ξ)

]
ln

[
1

2
− ν

2
exp(ξ)

]
. (43)

Note that if a+ = a−, k+ = k−, and x+ = x−, then E[�] = 0. On the other hand, if
x+ − x− → ∞ or k+ − k− → ∞, then E[�] = ln 2. In figure 1, the amount of entanglement
E[|�〉]/ln(2) is depicted as a function of Q = (k+ − k−)2/4a2 (Q = (x+ − x−)2a2/4),
taking a+ = a− = a and x+ = x− (k+ = k−). In figure 2, E[|�〉]/ln(2) is plotted against
L = ln(a+/a−), taking x+ = x− and k+ = k−.
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3. Time-dependent wavefunctions and entanglement

3.1. The free particle

Now we consider a free, spin-1/2 particle. The Hamiltonian consists only of translational
kinetic energy,

H = P 2

2m
= − h̄2

2m

(
∂2/∂x2 0

0 ∂2/∂x2

)
. (44)

The well-known Gaussian wave packet solutions corresponding to a quantum free particle
(with no spin) of mass m moving in one dimension is

φ(x, t) = A(t) exp

[ −a2(x−x0)
2

2 + ik
[
(x − x0) − h̄kt

2m

]
1 + ih̄a2t/m

]
, (45)

where

A(t) =
√

(
√

π)−1a

1 + i(h̄a2t/m)
. (46)

The square modulus of this wavefunction, describing the (time-dependent) probability density
for finding the particle at different positions, is given by

|φ(x, t)|2 = 1√
2πσ(t)

exp

[
− [(x − x0) − γ t]2

2σ(t)2

]
, (47)

where

σ(t) =
√

1 + h̄2a4t2m−2

2a2
, (48)

and

γ = h̄k/m. (49)

Note that the wave packet (45) is normalized,∫
|φ(x, t)|2 dx = 1. (50)

A particular family of time-dependent solutions for a free spin-1/2 particle moving in one
dimension is obtained by adopting Gaussian solutions of the form (45) for the two components
f± of the particle’s wavefunction,

f+(x, t) = αA+(t) exp

[
−a2

+(x − x+)
2/2 + ik+

[
(x − x+) − h̄k+t

2m

]
1 + ih̄m−1a2

+t

]
, (51)

and

f−(x, t) = βA−(t) exp

[
−a2

−(x − x−)2/2 + ik−
[
(x − x−) − h̄k−t

2m

]
1 + ih̄m−1a2−t

]
, (52)

so that

f+(x, t)f ∗
+ (x, t) = α2|A+(t)|2 exp

[
− [(x − x+) − γ+t]2

2σ 2
+ (t)

]
, (53)

with

σ+(t) =
√

1 + h̄2a4
+t

2m−2

2a2
+

. (54)
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Analogously,

f−(x, t)f ∗
−(x, t) = β2|A−(t)|2 exp

[
− [(x − x−) − γ−t]2

2σ 2−(t)

]
, (55)

with

σ−(t) =
√

1 + h̄2a4−t2m−2

2a2−
, (56)

so that

f+(x, t)f ∗
−(x, t) = αβ∗A+(t)[A−(t)]∗ exp

[
K+

1 + ih̄m−1a2
+t

]
exp

[
K∗

−
1 − ih̄m−1a2−t

]
, (57)

where

K+ = −a2
+(x − x+)

2/2 + ik+

[
(x − x+) − h̄k+t

2m

]
,

K∗
− = −a2

−(x − x−)2/2 − ik−

[
(x − x−) − h̄k−t

2m

]
.

(58)

We calculate now ρ̂(S) following (9) and using (34), (53) and (55):

ρ̂(S)
++ =

∫ +∞

−∞
dx f+(x, t)f ∗

+ (x, t) = |α|2,

ρ̂
(S)
−− =

∫ +∞

−∞
dx f−(x, t)f ∗

−(x, t) = |β|2.
(59)

For

ρ̂
(S)
+− =

∫ +∞

−∞
dx f+(x, t)f ∗

−(x, t), (60)

instead, a little additional algebra is needed so as to get the final result. After using (57),

ρ̂
(S)
+− = αβ∗A+(t)[A−(t)]∗ exp(τ )

∫ +∞

−∞
dx exp

[
−

(
a2

+ + a2
−
)

2KI

x2 +
δ

KI

x

]
, (61)

with

KI = 1 + ih̄tm−1(a2
+ − a2

−
)

+ h̄2a2
+a

2
−t2m−2, (62)

τ = 1

KI

[
− a2

+x
2
+

2
− a2

−x2
−

2
+ (−ik+ − γ+ta

2
−)

(
x+ +

γ+t

2

)

+
(
ik− − γ−ta2

+

) (
x− +

γ−t

2

)
+

1

2

ih̄

m
t
(
a2

+a
2
−
)(

x2
+ − x2

−
)]

, (63)

and

δ = a2
+x+ + a2

−x− + i(k+ − k−) + ih̄m−1ta2
+a

2
−(x− − x+) + t

(
γ−a2

+ + γ+a
2
−
)
, (64)

using (34) we are led to

ρ̂
(S)
+− = αβ∗

√
2a+a−(
a2

+ + a2−
) exp(τ ) exp

[
δ2

2
(
a2

+ + a2−
)
KI

]
. (65)

Rearranging and regrouping things we can recast the above now in the fashion

ρ̂
(S)
+− = αβ∗ν exp(ξ) exp(iθ), (66)
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where the quantities ν, ξ and θ are given (in terms of a±, x± and k±) by equations (37). Using
matrix notation, we find then the desired result for ρ̂(S) as follows,

ρ̂(S) =
(

|α|2 αβ∗ν exp(ξ) exp(iθ)

βα∗ν exp(ξ) exp(−iθ) |β|2
)

, (67)

whose eigenvalues are

λ1,2 = 1
2 ± 1

2

√
1 − 4|α|2|β|2[1 − ν2 exp(2ξ)]. (68)

Of course, once we have the eigenvalues we can straightforwardly evaluate E[|�〉] from (27),

E[|�〉] = −λ1 ln λ1 − λ2 ln λ2. (69)

We see that the marginal spin density matrix (67) is time independent. In point of fact, the
density matrix (67) coincides with the matrix (36), which was obtained from a wavefunction
equal to (51)–(52) at t = 0. The time independence of (67) implies that its eigenvalues and
the entanglement measure E[|�〉] are time independent as well. The reason for this is that the
free particle’s Hamiltonian (44) is of the form (17), and the associated time evolution operator
is ‘local’.

3.2. A spin-1/2 particle in a uniform magnetic field

In this section, we consider the time dependence of entanglement with reference to a spin-
1/2 system with magnetic moment (eh̄/2mec) subjected to the action of an external uniform
magnetic field B applied in the z-direction. The Hamiltonian reads

H = P2

2m
−

(
eB

mec

)
Sz, (70)

so that, defining first the Larmor frequency

ω = |e|B
mec

(71)

we can express the Hamiltonian in the fashion

H = P2

2m
+ ωSz, (72)

so that the time evolution operator becomes

U(t, 0) = exp

(−iHt

h̄

)
= exp

(−iwSzt

h̄

)
exp

(
− it

h̄

P2

2m

)
. (73)

This is to be applied to the initial state

|�0〉 =
∫

d3r[f+(r, 0)|+〉|r〉 + f−(r, 0)|−〉|r〉], (74)

and one obtains

|�(t)〉 =
∫

d3r

[
exp

(
− iwt

2

)
f+(r, t)|+〉|r〉 + exp

(
iwt

2

)
f−(r, t)|−〉|r〉

]
. (75)

Thus, the density operator for this system is represented by the matrix

ρ̂(S) =
( ∫ |f+|2 d3r e−iwt

∫
f+f

∗
− d3r

eiwt
∫
f ∗

+ f− d3r
∫ |f−|2 d3r

)
, (76)
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whose eigenvalues are easily seen to be time independent, which entails that the entanglement
inherits this time invariance as well. The Hamiltonian of a spin-1/2 particle in an homogeneous
magnetic field constitutes an example of a Hamiltonian of the form (15). As we have already
mentioned, the concomitant time evolution operator is ‘local’ (in the sense that it acts separately
on the translational and on the spin degrees of freedom) and, consequently, preserves the
amount of entanglement of the system.

4. Entanglement in the Stern–Gerlach experiment

The Stern–Gerlach experiment [30–38] is one of the most important experiments in the history
of physics [30]. Due to its conceptual relevance, it continues to be the focus of research
efforts [34, 39, 40], and plays a fundamental role in the teaching of quantum mechanics
[24, 28]. Within our present approach, the Stern–Gerlach experiment also provides a valuable
opportunity for discussing the role of entanglement in quantum measurement processes [34].
In the Stern–Gerlach experiment a beam of particles moving parallel to the x-axis are passed
through a non-uniform magnetic field B contained in the plane perpendicular to this axis (so
that Bx = 0) of the form

B(r) = 0î + by ĵ + (B0 − bz)k̂. (77)

This field has a constant component of intensity B0 and a gradient of intensity b. The
Schrödinger equation describing the system is

H |ψ〉 = ih̄
∂

∂t
|ψ〉, (78)

with the Hamiltonian being [32]

H = P2

2m
+

gµB

h̄
S · B(r), (79)

with µB the Bohr magneton and g the gyromagnetic ratio. Substituting (79) and (77) into (78)
we obtain coupled Schrödinger equations for each spinor component [32]

− h̄2

2m
∇2ψ+ +

gµBby

2i
ψ− +

gµB

2
(B0 − bz)ψ+ = ih̄

∂ψ+

∂t
,

− h̄2

2m
∇2ψ− − gµBby

2i
ψ+ − gµB

2
(B0 − bz)ψ− = ih̄

∂ψ−
∂t

.

(80)

The spinor components are seen to be coupled through the Sy contribution. Now, the spin S
exhibits the famous precession effect about the axis B̂(r) ∼ k̂, according to [32]

dS
dt

= −µBg

h̄
B(r) × S, (81)

with frequency ω ∼ B0µBg/h̄. Here Sz is preserved, but the Sy contribution oscillates
rapidly. It is argued in [32] that this oscillation, after properly averaging over time, effectively
decouples our two equations. One then effects first the transformation [32]

ψ+(r, t) = exp

(−igµBB0t

2h̄

)
ψ+(r, t),

ψ−(r, t) = exp

(
+igµBB0t

2h̄

)
ψ−(r, t),

(82)

and, as stated, averaging over a time period (i) long enough compared to the oscillation period
for the coupling term, but (ii) short compared with those needed for the packet to appreciably
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move along its trajectory, the coupling term relating the new barred component is seen to
vanish [32], so that (80) becomes

− h̄2

2m
∇2ψ+ − gµBbz

2
ψ+ = ih̄

∂ψ+

∂t
,

− h̄2

2m
∇2ψ− +

gµBbz

2
ψ− = ih̄

∂ψ−
∂t

,

(83)

and we have ended up with two independent equations, one for each component, each of which
has been endowed with its own effective Hamiltonian corresponding to a particle subject to
a force whose direction is determined by the spin quantum number [32]. These are the
equations we have to tackle now. Given two pertinent solutions ψ±(r, t), the time evolution
in the Stern–Gerlach would then be given in the fashion

ψ±(r, t) = exp

(
∓ igµBB0t

2h̄

)
ψ±(r, t). (84)

Going back to (83), solving either of the two equations poses the problem of solving the
Schrödinger equation for a particle subject to the action of a constant applied force in
the z-direction. This Schrödinger equation is separable. That is, the product of two one-
dimensional solutions for a free particle moving along the x- and y-axes, respectively, times
a one-dimensional solution for a particle moving along the z-axis under the influence of a
constant force, provides a solution for our three-dimensional problem. Now, it has been
shown in [41] that there is a general procedure for the construction, starting from a solution to
the (one-dimensional) free particle’s Schrödinger equation, of a time-dependent solution of the
Schrödinger equation corresponding to a particle subject to a constant force. Consequently,
we start with a factorized, time-dependent solution for a (three-dimensional) free particle,

φ(r, t) = φ(x, t)φ(y, t)φ(z, t), (85)

where each factor is a one-dimensional Gaussian wave packet (see equation (45)). Then,
following the procedure explained in [41], we construct the associated solution for the case of
a constant force in the z-direction,

ψ(r, t) = φ(x, t)φ(y, t)ψ(z, t), (86)

where (only the factor involving the coordinate z is affected)

ψ(z, t) = φ
(
z − z0 − v0t − 1

2act
2, t

)
eiS(z,t). (87)

Here z0 and v0 are integration constants and ac is the (uniform) acceleration. In our case, we
have

ac± = ±gµBb

2m
. (88)

In general, one has for S(z, t) [41]

S(z, t) = m

h̄

(
v0z + aczt − 1

2
acv0t

2 − 1

6
a2

c t
3 − 1

2
v2

0 t + constant

)
. (89)

Using now (84)–(89) we can express the solution for the Stern–Gerlach experiment in the
fashion

ψ±(z, t) =
√

(2
√

π)−1a±
1 + i

(
h̄a2±t

/
m

) exp


 −a2

±[z−z±(t)]2

2 + ik±
[
(z − z±(t)) − h̄k±t

2m

]
1 + ih̄a2±t

/
m


 exp[iT±(z, t)],

(90)
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with

z±(t) = z0 + v0t + 1
2ac±t2, (91)

and

T±(z, t) = S(z, t) ∓ gµBB0t

2h̄
. (92)

Note that each component ψ± is normalized to 1/2, in such a way that the complete two-
component wavefunction is normalized to unity,∫

[|ψ+|2 + |ψ−|2] d3r = 1. (93)

We have at this point, with (90), all that is needed so as to evaluate the density operator
ρ̂(S). We now assume that a+ = a− = a, k+ = k−, z0 = 0, and v0 = 0. We find, following the
procedure of the preceding sections,

ρ̂(S)(t) =
(

1
2

∫
ψ+ψ

∗
− d3r∫

ψ∗
+ψ− d3r 1

2

)
, (94)

the pertinent corresponding eigenvalues reading

λ1,2 = 1

2
±

∣∣∣∣
∫

ψ+ψ
∗
− d3r

∣∣∣∣ , (95)

where ∣∣∣∣
∫

ψ+ψ
∗
− d3r

∣∣∣∣ = 1

2
exp(η), (96)

with

η =
(

gµBb

2m

)2

t2

[−4m2/h̄2 − 5t2a4 − a8t4h̄2/m2

4a2(1 + h̄2a4t2/m2)

]
. (97)

Finally, by recourse to (27) we can evaluate the entanglement E[|�〉](t) in the present setting.
We only have to insert the eigenvalues (95), computed by recourse to (96)–(97), into

E[|�〉](t) = −λ1 ln λ1 − λ2 ln λ2. (98)

The evolution of the entanglement between the translational and the spin degrees of freedom
in the Stern–Gerlach experiment is illustrated in figure 3. In this figure E/ln(2) is plotted
against t ′ = h̄a2t/m, for various values of the dimensionless quantity κ = 1

a

[
m2ac

2h̄2

]1/3
, κ = 1

(continuous line), κ = 0.5 (dotted line), κ = 0.3 (dashed line), and κ = 0.2 (dot-dashed line).
We have also considered the contextuality measure I discussed by de la Torre in [3]. The

measure I was inspired by Schrödinger’s formulation of the uncertainty principle, given by [3]

(�Â)2(�B̂)2 �
(

1

2i
〈[Â, B̂]〉

)2

+

(
1

2
〈{Â, B̂}〉 − 〈Â〉〈B̂〉

)2

, (99)

where an anticommuter appears in the second term of the right-hand side. This second term
is precisely I, i.e.,

I = [
1
2 〈{A,B}〉 − 〈A〉〈B〉]2

: {A,B} = AB + BA. (100)

Consider the case when we have a composite quantum system consisting of two subsystems,
and the observable A refers to one of these subsystems, while observable B refers to the
other subsystem. It is clear that, under these circumstances, the quantity I vanishes for all
factorizable pure states. In contrast, it does not vanish for some entangled pure states. The
same situation occurs when observables A and B refer to different degrees of freedom of a
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Figure 3. Time dependence of the entanglement for the Stern–Gerlach experiment. E/ln(2) is

plotted against t ′ = h̄a2t/m, for various values of the dimensionless quantity κ = 1
a

[ m2ac

2h̄2 ]1/3:
κ = 1 (continuous line), κ = 0.5 (dotted line), κ = 0.3 (dashed line), and κ = 0.2 (dot-dashed
line). All depicted quantities are dimensionless.

given system leading to a Hilbert space with a tensor product structure. This is the case when
we have the translational and the spin degrees of freedom. Here we take A = z and B = Sz,
so that

I = [〈zSz〉 − 〈z〉〈Sz〉]2. (101)

Evaluating now I on the wavefunction (90) we find

I = h̄2

16
(z+ − z−)2. (102)

Therefore, the time dependence of I in the Stern–Gerlach experiment is given by

I = h̄2

16

g2µ2
Bb2

4m2
t4. (103)

We see that, as occurs with the entanglement measure E, the measure I also increases
monotonically with time during the Stern–Gerlach experiment.

5. Conclusions

In the present contribution, we have considered basic aspects of quantum entanglement in
connection with the two-component wavefunction description of spin-1/2 particles. Spin-1/2
systems were used to illustrate several important concepts related to quantum entanglement:
(i) the distinction between separable and entangled states, (ii) a quantitative measure of
entanglement, and (iii) the entanglement preserving property of local unitary operations. This
last aspect of entanglement was illustrated with two basic systems: a free, spin-1/2 particle
and a spin-1/2 particle in a uniform magnetic field. Finally, we studied the time evolution of
entanglement in the Stern–Gerlach experiment. We derived an expression for the amount of
entanglement between the spin and the translational degrees of freedom as a function of time,
and showed that it increases monotonically during the Stern–Gerlach experiment. We also
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computed, as a function of time, the measure I introduced by de la Torre in [3]. This measure
also increases monotonically.

The main message we wanted to convey in the present contribution is that the two-
component wavefunction formalism offers interesting opportunities for the discussion of
important ideas related to quantum entanglement, using ingredients that are usually included
in standard courses in quantum mechanics. Of course, this is not the only scenario in terms
of which entanglement can be illustrated in a quantum mechanics course. The standard case
of a composite system constituted by two subsystems endowed with two-dimensional Hilbert
spaces (that is, two qubits) can also be profitably discussed [1]. The discussion presented here,
concerning the two-component wave formalism, should be studied in addition to two-qubit
systems. The analysis of entanglement in relation to the two-component wave formalism
is particularly interesting because it allows for the discussion of entanglement in the Stern–
Gerlach experiment, which constitutes the paradigmatic example of a quantum mechanical
measurement process.
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