DEPARTAMENTO DE MATEMÁTICA APLICADA UNIVERSIDAD DE GRANADA

Matemáticas (Licenciatura en Biología). 13 de septiembre de 2005.

Nombre	Grupo
EJERCICIO 1. Se considera la ecuación	
$x' = x \ln x.$	
Se pide:	
i) Demuestra que para cualquier número real $A,$ la función	
$x(t) = e^{Ae^t}$	
es solución de la ecuación.	
ii) Dibuja el retrato de fases y determina la estabilidad de los puntos	s de equilibrio de dicha ecuación.
iii) Esboza la gráfica de la solución que cumple $x(0) = 1/2$.	
iv) Encuentra la solución que cumple $x(0)=2$.	

EJERCICIO 2. Indica las afirmaciones que sean correctas. No es necesario justificar las respuestas.

1. La primitiva de la función

$$\frac{e^{\operatorname{sen}(\ln x)}\cos(\ln x)}{x}$$

es

- (a) $e^{\cos(\ln x)} + C$.
- (b) $e^{\operatorname{sen}(\ln x)} + C$.
- (c) $-e^{\cos(\ln x)} + C$.
- (d) $-e^{\operatorname{sen}(\ln x)} + C$.
- (e) Ninguna de las anteriores.
- 2. Un población definida por

$$P' = P(8 - 2P), P(0) = 1$$

cumple

- (a) P(t) es una función decreciente.
- (b) $P(t) \to 8, t \to +\infty$.
- (c) $P(t) \to 4, t \to +\infty$.
- (d) $P(t) \to 2, t \to +\infty$.
- (e) Ninguna de las anteriores.
- 3. Dos especies interaccionan según las leyes

$$\begin{cases} x' = (-x+2y)x, \\ y' = (10-x-y)y. \end{cases}$$

- (a) La relación entre ambas especies es de competencia.
- (b) La relación entre ambas especies es de mutualismo.
- (c) La especie y es una presa para el depredador x.
- (d) En ausencia de la especie y la especie x se extinguirá
- (e) Ninguna de las anteriores.
- 4. El sistema de ecuaciones diferenciales

$$\begin{cases} x' = x - y, \\ y' = x + y, \end{cases}$$

cumple:

- (a) x = 0, y = 0 es solución.
- (b) x = -1, y = 1 es solución.
- (c) x = t, y = -t es solución.
- (d) $x(t) = e^t \cos t$, $y(t) = e^t \operatorname{sen} t$ es solución.
- (e) Ninguna de las anteriores.

EJERCICIO 3. Indica las afirmaciones que sean correctas. No es necesario justificar las respuestas.

1. El sistema de ecuaciones diferenciales

$$x' = (1 - x + y - 2z)x y' = (3 + 2x - 3y + z)y z' = (3 + 2x - y - 3z)z$$

- (a) modela una relación entre tres especies en la que la especie representada por x beneficia a las especies representadas por y y z.
- (b) cumple que, en ausencia de las especies representadas por x e y ($x \equiv 0$ e $y \equiv 0$), la especie representada por z tiende a su población límite, que es 1.
- (c) tiene un punto de equilibrio en (1, 2, 1).
- (d) no tiene puntos de equilibrio positivos.
- (e) Ninguna de las anteriores.

2. Sea el sistema de ecuaciones lineales

$$\begin{cases} 3x & + & 2y & + & z & + & t & = & 4 \\ x & - & y & + & & t & = & 2 \\ 2x & + & 3y & + & z & + & \alpha t & = & 3 \end{cases} \right\}.$$

- (a) Si $\alpha = 0$ entonces el sistema no tiene solución.
- (b) Si $\alpha = 0$ entonces el sistema tiene infinitas soluciones.
- (c) Si $\alpha \neq 0$ entonces el sistema no tiene solución.
- (d) Si $\alpha \neq 0$ entonces el sistema tiene infinitas soluciones.
- (e) Ninguna de las anteriores.
- 3. Sea x(t) la solución de la ecuación $x' = x^2(1+t^2)$ que cumple x(1) = 1.
 - (a) x'(1) = 1.
 - (b) x'(1) = 2.
 - (c) $x''(t) = 2x(t)[x'(t)(1+t^2) + tx(t)].$
 - (d) Cualquier solución no constante de esta ecuación es estrictamente creciente.
 - (e) Ninguna de las anteriores.
- 4. Se considera la ecuación x' = (x-2)(x+7).
 - (a) Sus puntos de equilibrio son x = -2 y x = 7.
 - (b) El punto de equilibrio x = 2 es inestable.
 - (c) El punto de equilibrio x = -7 es inestable.
 - (d) La solución de la ecuación que cumple x(0) = 0 es estrictamente creciente.
 - (e) Ninguna de las anteriores.