Biografías

Srinivasa Aayiangar Ramanujan
Matemático (1887 Erode, India 1920, Chetput, India)

Hijo de un contable, que trabajaba para un mercader de paños en Kumbakonam, y de la hija de un modesto oficial brahmán del juzgado de Erode, mujer de "gran sentido común", nació en el seno de una familia de condición humilde. Después de algún tiempo de matrimonio sin tener hijos, su abuelo materno "pidió a la famosa diosa Namagiri, de la vecina ciudad de Namakkal, que bendijese a su hija con descendencia". Poco después, el 22 de diciembre de 1887, nacía Ramanujan, su primer hijo.

Matemático indio. De formación autodidacta, descubrió y rededescubrió centenares de teoremas matemáticos. En 1914, en virtud de la mediación de G. H. Hardy, fue admitido como becario en el Trinity College de Cambridge. Durante su estancia en Cambridge publicó una veintena de artículos, la mayoría de ellos relativos a la teoría analítica de los números. En 1918 fue elegido miembro de la Royal Society, pero su incipiente tuberculosis y una subvención de la Universidad de Madrás lo indujeron a regresar a su país. La teoría de funciones, las series de potencias y la teoría de números fueron los campos matemáticos en los que más destacó.

Comenzó a ir a la escuela a los cinco años. Sin haber cumplido los siete años, y gracias a una beca, le llevaron al colegio de Kumbakonam. Según parece, casi de inmediato reconocieron sus extraordinarias facultades. "Se divertía entreteniendo a sus amigos con teoremas y fórmulas, recitando la lista completa de las raíces sánscritas y repitiendo los valores de pi y de la raíz cuadrada de dos con cualquier número de cifras decimales". Su primer contacto con la matemática formal le llegó de la mano de Synopsis of Pure Mathematics, de Carr, cuando tenía quince años y estaba en la sexta clase de la escuela. El libro, perteneciente a la biblioteca del College del Gobierno local, se lo consiguió prestado un amigo. Ante él se despertó el genio de Ramanujan, quien se puso inmediatamente a demostrar sus fórmulas. Cada solución era un auténtico trabajo de investigación original, ya que carecía de cualquier tipo de ayuda.

Consiguió, a los dieciséis años, pasar el examen de ingreso y obtuvo una beca en el College del Gobierno de Kumbakonam, la "Junior Subrahmanyan Scholarship". Nuestro joven se dedicaba por completo a las matemáticas y descuidaba las otras materias, especialmente el inglés, debido a ello no supero su siguiente examen y perdió la beca. Después de abandonar Kumbakonam, y pasar por Vizagapatam, se presentó en Madrás al "Primer examen en Artes", en diciembre de 1906, fracasó y jamás volvería a intentarlo.

Durante unos años más continuó su trabajo independiente en matemáticas, hasta que en 1909 se casó y necesitó un empleo permanente. Fue entonces, mientras buscaba trabajo, cuando le dieron una carta de recomendación para un amante de las matemáticas, Diwan Behadur R. Ramachandra Rao, que era recaudador de Nelore, a 80 millas al norte de Madrás. Ramachandra Rao mantuvo por un tiempo a Ramanujan, después de fallar otros intentos para conseguir una beca, y no queriendo ser mantenido por mucho tiempo por otra persona, aceptó un pequeño empleo en las oficinas de la Compañía del Puerto de Madrás.

En 1911, se publica su primer trabajo en el Journal of the Indian Mathematical Society, el mismo año publica su primer artículo largo sobre algunas propiedades de los números de Bernoulli. El año siguiente colabora en la misma revista con algunos problemas y dos notas. En 1913 escribe a Hardy la carta, reproducida al comienzo, a la que acompaña alrededor de 120 teoremas. Según algunos autores, había escrito a otros matemáticos europeos, pero sólo Hardy reconoció la valía del autor de la misiva.

A pesar de que Ramanujan tuvo numerosos y brillantes éxitos, sus trabajos sobre los números primos y sobre todos los problemas relacionados con esta teoría estaban ciertamente equivocados. Puede decirse que éste fue su único gran fracaso. Pero todavía no estoy convencido que, en cierto modo, su fracaso no fuera más maravilloso que ninguno de sus triunfos.

Después de ser relevado de su puesto en el puerto de Madrás, en mayo de 1913, gracias a la ayuda de muchos amigos y a una beca especial, el camino parecía abierto para su traslado a Cambridge, por lo que Hardy se había esforzado. Sin embargo su prejuicio de casta y la falta de permiso de su madre le hicieron renunciar. Por fin llegó a Cambridge con una beca de 250 libras de Madrás, 50 de ellas destinadas al sustento de su familia en la India, y una asignación del Trinity College de 60 libras.

Las limitaciones de su conocimiento eran tan asombrosas como su profundidad. Era un hombre que podía trabajar con ecuaciones modulares y teoremas de multiplicación compleja, con medios desconocidos... Pero nunca había oído hablar de una función doblemente periódica o del teorema de Cauchy ni tenía la más remota idea de lo que era una función de variable compleja. Describía nebulosamente su concepto acerca de lo que constituía una demostración matemática. Había obtenido todos sus resultados, nuevos o viejos, verdaderos o falsos, por un proceso mixto de demostración, intuición e inducción, del cual era completamente incapaz de dar cualquier razón coherente.

Era imposible pedir a este hombre que se sometiera a una instrucción matemática, que intentara aprender de nuevo matemáticas desde el principio. Temía además que, si yo insistía indebidamente en materias que Ramanujan consideraba fastidiosas, podía destrozar su confianza o romper el encanto de su inspiración. Por otra parte, había cosas que era necesario que aprendiera. Algunos de sus resultados eran equivocados, en particular los que se referían a la distribución de números primos, a los que daba la mayor importancia... Así yo tenía que intentar enseñarle y en cierto modo lo logré, aunque, obviamente, yo aprendí de él mucho más de lo que él aprendió de mí..."

Efectivamente, en la primavera de 1917 comenzó a manifestarse su tuberculosis. En verano se trasladó a un sanatorio de Cambridge, y ya nunca llegó a disfrutar de un largo periodo fuera de la cama. Pasó por sanatorios en Wells, Marlock y Londrés, sin mejora significativa hasta el otoño de 1918. Estimulado, probablemente por su elección para la Royal Society of London, reanudó el trabajo activo, produciendo en esa época algunos de sus mejores teoremas. Un acicate más le llegaría con su elección para una Trinity Fellowship. Ambas sociedades tienen el mérito de haber reconocido la valía de Ramanujan antes de que fuera demasiado tarde.

Poseía casi una pequeña biblioteca de obras sobre la cuadratura del círculo y otras curiosidades... Era vegetariano en el sentido más estricto (esto constituyó más tarde, cuando estuvo enfermo, una gran dificultad) y durante el tiempo que estuvo en Cambridge cocinó todos sus alimentos él mismo y nunca lo hizo sin antes ponerse en pijama.

Considerado uno de los grandes matemáticos de todos los tiempos, con Euler, Gauss..., nos dejó unos 4000 teoremas, a pesar de su corta vida. Durante sus cinco años de estancia en Cambridge, que desgraciadamente coincidieron con los de la Primera Guerra Mundial, publicó 21 artículos, 5 de ellos en colaboración con G. H. Hardy.

He descubierto recientemente funciones muy interesantes que he denominado falsas funciones theta. Las falsas funciones theta... entran en las matemáticas tan bellamente como las funciones theta ordinarias. Te mando con esta carta algunos ejemplos.

Ramanujan moría en 1920, el desarrollo de su obra no ha concluido, el último cuaderno de notas, el cuaderno "perdido", encontrado en 1976, contenía las 600 fórmulas escritas durante su último año de vida. G. H. Hardy, editó en 1923, el capítulo XII del segundo cuaderno de Ramanujan sobre series hipergeométricas que contenía 47 teoremas principales, muchos seguidos por corolarios y casos particulares. Este trabajo le llevó tantas semanas que sintió que si se hubiera propuesto editar el cuaderno completo, "me hubiera llevado toda mi vida".

A principios de 1919 volvió a la India, donde murió al año siguiente, con un estatus científico y una reputación como ningún indio había disfrutado antes.