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Abstract

In this work we study complete spacelike surfaces with a constant
principal curvature R in the 3-dimensional de Sitter space S3, proving
that if R? < 1, such a surface is either totally umbilical or umbilically free.
Moreover, in the second case we prove that the surface can be described
in terms of a complete regular curve in 83, We also give examples which
show that the result is not true when R? > 1

1 Introduction and Statement of the Main Result

Spacelike surfaces in the de Sitter space S7 have been of increasing interest
in the recent years from different points of view. That interest is motivated,
in part, by the fact that they exhibit nice Bernstein-type properties. For
instance, Ramanathan [7] proved that every compact spacelike surface in S}
with constant mean curvature is totally umbilical. This result was generalized
to hypersurfaces of any dimension by Montiel [6]. On the other hand, Li [5]
obtained the same conclusion when the compact spacelike surface has constant
Gaussian curvature. More recently, the first author jointly Romero [3] have
proved that the totally umbilical round spheres are the only compact spacelike
surfaces in the de Sitter space such that the Gaussian curvature of the second
fundamental form is constant.
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As a natural generalization of Ramanathan and Li results, the authors
[1] have recently proved that the only compact linear Weingarten spacelike
surfaces in S, (that is, surfaces satisfying that a linear combination of their
mean and Gaussian curvatures is constant) are the totally umbilical round
spheres. In the quoted paper, we also study compact spacelike surfaces with a
constant principal curvature, proving that such surfaces are totally umbilical
round spheres.

In this work we extend the last result to complete spacelike surfaces in
the following terms:

Theorem 1 Let o) : M—S3 be a complete spacelike surface with a constant
principal curvature R such that R* < 1. Then (M) is either totally umbilical
or umbilically free. In the second case R > 0 and the surface is not compact
and can be described as

Bley) = S (Raly) +eon(e)or() +sin(aa(s) (1)

where « is a C*° complete regular curve in S7 and {vi(y),vo(y)} is an or-
thonormal frame of the normal plane along «.

Conversely, given a regular curve « in S3, (1) defines an umbilically free
spacelike immersion in S with a constant principal curvature R such that
0< R*<1.

To finish, in Section 4, we construct some examples which show that the
result is false when R? > 1

2 Preliminaries

Let L* be the 4-dimensional Lorentz-Minkowski space, that is, the real vector
space R* endowed with the Lorentzian metric tensor (,) given by

where (z1, 22, 23, 24) are the canonical coordinates of R*. The 3-dimensional
unitary de Sitter space is given as the following hyperquadric of L*,

St ={reL*: (z,2)=1}.

As is well known, S? inherits from L* a time-orientable Lorentzian metric
which makes it the standard model of a Lorentzian space of constant sectional
curvature one. A smooth immersion ¢ : M? — S} C L* of a 2-dimensional
connected manifold M is said to be a spacelike surface if the induced metric
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via ¢ is a Riemannian metric on M, which, as usual, is also denoted by (,).
The time-orientation of S7 allows us to choose a timelike unit normal field N
globally defined on M, tangent to S}, and hence we may assume that M is
oriented by N. Finally, we will denote by Ay, As the principal curvatures of M
associated to V.

3 Proof of the Theorem

Let ¢ : M? — 83 C L* be a complete spacelike surface in S7 with a constant
principal curvature 0 < Ay = R < 1 (up to a change of orientation). If there
exists a non umbilical point p € M, then we can consider local parameters
(u,v) in a neighborhood U of p without umbilical points, such that

(dib, dv) = E du?® + G dv?
(dib, —dAN) = RE du? + \G dv?

where the principal curvature Ay # R. Then, the structure equations are given

by

E, F,
¢uu:ﬁ¢u_%¢v_REN_E¢

F, Gy
¢uv — ﬁ ¢u + % ¢v

Gy Gy

¢vv—_ﬁ Qbu‘I'% ¢U_A2GN_G¢
Nu =-R ¢u
Nv - _AQ ¢v

and the Mainardi-Codazzi equations for the immersion ¢ are

(R - AQ)E»U - 0
Gy B
(B = Xa) 3 + (R = M) = 0.

Since Ay # R, the coefficient E does not depend on v, that is, ' = E(u). If
we consider the new parameters

x:/mdu, y=uv
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the structure equations become
Ypy = —RN — ¢
_Ge
226G
Gy
¢yy - _7
Ny =-R ¢x

Ny = —A3 9y

and the Mainardi-Codazzi equation is

(R=Xa) 52 + (R~ 2)e = 0. (3)

On the other hand, the Gauss equation is given by

¢xy ¢y

b Sy = MGN — G @

Gy Go\? 2
(&) (&) mrmRb-ma

Thus, if we take

TR
we obtain from (3) and (4) that

G

e = ((f—G)+ (f—G)) p=-R-(1- Ry @

Let v, be the maximal line of curvature passing through a point ¢ = ¥ (z,, y,) €
U for the principal curvature R. Then, from (2) it follows that v,(¢) = (2, +
t,y,) satisfies

(Vg)et = —R(N 0 vg) — 74
(N © 7q)t = _R('Yq)t

so that v, is a geodesic curve, which is a solution of the differential equation
(va)te + (1 = B*)y, = Ru,
for a constant vector w, € L*. Therefore, taking into account that 0 < R < 1,

vq is given by

'yqzcos( 1_R2t)w1—|—sin( 1—R2t)w2—l—%wo (6)
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for suitable vectors wy, wq € L.
From (5), the principal curvature Ay can be calculated on v, as

R -1
S P _R2 ; CR24) -
R /\2_<acos( 1-R t)—l—bsm( 1 Rt) 1—R2) (7)
for real constants a, b.
Hence, if v,(t1) is the first umbilical point on +,, we obtain from (7) and
the continuity of Ay that

0= R = Xa(3y(t) = fim R = Xa(3,(t)) # 0

which is a contradiction. Therefore, there is no umbilical point on ~,.
Observe that, since M is complete, it follows that the geodesic v, is defined
for all t € R. Moreover R # 0, because in that case

acos( 1—R2t)—|—bsin( 1—R2t):0

for some t € R, which contradicts the continuity of A,.

Let U be the connected component of non umbilical points containing p.
Note that U is an open set, and from the above reasoning, can be parametrized
by (z,y) € (—00,00) X (B1, B2) for certain By, B2, where —oo < 1 < B3 < o0,
so that the immersion can be expressed from (6) as

P(x,y) = cos (\/ 1—-R2 x) wi (y)
+ sin (\/ 1—- R2 x) wa(y) +

% w,(y) (8)

Let us suppose now that there exists an umbilical point ¢ € 81&((7) Then
there exists a sequence of points ¢, = ¥ (z,, y,) tending to ¢, being (2., y,) €
[0,27/v1 — R?] X (81, B2). Therefore the sequence of compact geodesics v, of
length 27 /v/1 — R? passing through ¢, associated to the principal curvature
R, converges to a compact geodesic v passing through ¢ which is also a line
of curvature for the principal curvature R.

Now, from the above argument, it is sufficient to prove that there exists a
non umbilical point on V5 In fact, from (7) we are able to choose a point p,, €
v such that Ag(p,) = 1/R # R. Finally, from an argument of compactness,
there exists a subsequence {pz} of {p,} converging to a non umbilical point
pE;

Consequently M is either umbilically free or totally umbilical.

Observe that (8) can be rewritten as

P(x,y) = \/%7]%2 (Ra(y) + cos (\/ 1—R? x) v1(y) + sin (\/ 1—R? x) vg(y))
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where

1
o= — w,, vy =V1— R? wy, v = V1 — R? w,.

From the expressions of 4 and t,;, the Gauss map N can be calculated
using the first equation in (2). Thus, since (¢, ) =1, (¢, ) =1, (N, N) =
—1 and they are mutually orthogonal, it follows that «, vy, v are orthogonal,
and (o, ) = —1, (v1,v1) = 1 and (v, v9) = 1.

On the other hand, since 9, is orthogonal to v, and N, we get using also
that (g, N) =0

O/:HOP7 U1:H1P7 U§:M2P7

where P is the wedge product of a,v; and vy in L*, and pu,, gy, pg are O
functions. Moreover, since

2

(1, y) = ﬁ (R,uo + cos (\/ 1 - R? x) py + sin (\/ 1 - R? x) ,ug)
is positive, it follows that u, # 0 and therefore « is a regular curve with
tangent vector P. In particular, {vi(y),v2(y)} is an orthonormal frame of
the normal plane along «. Finally, the completeness of «a follows from the
completeness of M.

The converse is a straightforward computation. Anyway, it is worth point-
ing out that R # 0 because in other case from (7) and the completeness of the

immersion, there would exist a point on 7, where
acos( 1— R? t)—l—bsin( 1 — R? t) =0

for some t € R, which contradicts the continuity of Ay. Therefore the surface
must be a totally umbilical round sphere. [ |

Remark 2 Observe that we have not assumed that the principal curvatures
A1, A9 are necessarily ordered, but

(Al - R)(AQ - R) - 0

4 Examples

We use the following well-known result (see, for instance, [4])
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Given a Riemannian metric I and a symmetric (2,0)-tensor 11 on
a simply-connected 2-dimensional manifold M, if I and 11 satisfy
the Gauss and Mainardi-Codazzi equations of the de Sitter space
S?, then there ewists an only immersion (up to an isometry) 9 :
M—S3? such that I and I1 are its first and second fundamental
forms, respectively.

First, we construct a family of complete orientable surfaces in S7 with
umbilical and non umbilical points, and a constant principal curvature R = 1.

Example 3 Let us consider M = R? and 1, the only immersion (up to an
isometry) with first and second fundamental forms given by

I, = da? + % (2 + (2% - 2)h(y))2 dy?
and )
11, = da* + 1 (2 + wzh(y)) (2 + (2% - Q)h(y)) dy?

respectively, where h : R—R is a C'*° function which vanishes at some point
such that 0 < h(y) < ¢ < 1 for a constant ¢. Since

1 2
I=de*+ o (a®hly) +2(1 = h(y))) dy’ > da’ + (1= )* dy”
and dz?+(1 — 0)2 dy? is a complete metric, the immersion 1)y, is complete with

principal curvatures

2+ a2h(y)
2+ (2% = 2)h(y)’

Thus, the set of umbilical points is Q = {(z,y) : h(y) = 0}.
It is worth pointing out that the interior of {2 may be non empty. [ |

1 and

Now we are going to construct a family of complete orientable surfaces in
S? with umbilical and non umbilical points, and a constant principal curvature
R>1.

Example 4 Let us consider again M = R? and g, the only immersion (up
to an isometry) with first and second fundamental forms

2
i1 &
(R3h(y) + (R* — 1)e e )
1
IR,h = — dz? + dy2

R2 RZ(RZ _ 1)2
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and

1—21 2x
IIR,h — %d$2—|—(%e 1 R22
1—L »
+ h(y) (R?’h(y)—l—(R4—1)e 1 R2 )) dy2

(7717

respectively, where h : R—R is a non negative C* function which vanishes
at some point and R > 1. Since

-1 9
Ir > % (d$2—|—€ T dyz)

the immersion 1y is complete, with principal curvatures

9

1-L z

Rh(y) + (R? — 1)eV ' 77
Roby)+ (R = eV

Again, the set of umbilical points is Q = {(z,y) : h(y) = 0}.
As above, note that this surface can meet a totally umbilical surface in an
open set. [

R and
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