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Abstract

Here we extend Hadamards’ Theorem to other homogeneous three manifolds, i.e., we
prove that a compact orientable immersed surface Σ in general position whose principal
curvatures κi, i = 1, 2, satisfy κi ≥ τ , is an embedded sphere.
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1 Introduction
When is an immersed surface Σ, that is locally convex, an embedded globally convex surface?
There are now many answers to this question that depend on the meaning of locally convex and
the ambient manifold.

In R3 (and more generally in the space forms H3 and S3), there are complete answers.
Hadamard [H] proved that a smooth compact surface that is immersed in R3 with extrinsic
curvature Ke > 0, is an embedded sphere that bounds a convex body. Stoker then extended this
to complete immersed surfaces in R3 with Ke > 0, proving the surface is an embedded sphere
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or plane, and bounds a convex domain. These results were established also in S3 and H3 (see
[CW] and [C]).

J. Van Heijenhoort [VH] considered topological immersions of complete surfaces in R3

that are locally convex. This means each point of the surface has a neighborhood that is on the
boundary of a convex body. When this neighborhood contains no line segments, then it is called
strictly convex. He then proved that such a locally convex surface in R3, that has at least one
point that is strictly locally convex, is an embedded sphere or plane, the boundary of a convex
body.

Notice this fails to be true if there is no strictly convex point. Let Σ := γ ×R where γ is an
immersed, non embedded, closed curve in the (x, y)−plane, of strictly positive curvature.

The authors [EGR] have studied this question in other 3−manifolds. The simplest, most
symmetric such manifolds after the space forms, are the Riemannian submersions E(κ, τ) over
the M2(κ), where M2(κ) is either R2 if κ = 0, S2(κ) if κ > 0, or H2(κ) if κ < 0. Here τ is
the bundle curvature and the E(κ, τ) are S2(κ)× R, H2(κ)× R for τ = 0, and Berger spheres,

Heisenberg space and ˜PSL(2,R) for τ 6= 0. We take τ = 1/2 and κ = 0 or κ = ±1 for this
paper.

In H2 × R we proved a Hadamard-Stoker type theorem

Theorem: Let Σ be a complete immersed surface in H2 × R whose extrinsic cur-
vature Ke is strictly positive. Then Σ is an embedded sphere or plane.

Moreover, in [ES], the authors generalized the aforementioned result to general Hadamard-
Killing submersions among others.

In this paper we discuss some extensions of the Hadamard Theorem to the other homoge-
neous spaces, where we allow Ke to be zero. In fact, we will assume the second fundamental
form of the immersion is semi-definite, which is stronger thanKe ≥ 0. We will prove a theorem
which says when such an immersed surface is an embedded sphere.

2 Preliminaries
Let E denote one of the manifolds H2 × R, ˜PSL(2,R) or Nil(3). The first two are Riemannian
submersions over H2 (τ = 0 and τ = 1/2 respectively) and Nil(3) fibers over R2 (this is the
Heisenberg space: topologically R3 and τ = 1/2). We denote by π : E→ H2 or R2 the bundle
submersion.

Let Σ be an orientable compact immersed surface in E. Henceforth we will always assume
its second fundamental form II is semi-definite, and we orient Σ by the unit normal N so that
II ≥ 0 on Σ, i.e., the principal curvatures κ1 and κ2 of Σ are non-negative on Σ.

Let Ω be a domain of M2(κ) such that Σ ⊂ π−1(Ω). Let F(Ω) be a foliation of Ω whose
leaves are geodesics of M2(κ). For each geodesic γ ∈ F(Ω), P (γ) := π−1(γ) is a vertical
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plane in E. P (γ) is locally isometric to R2. In H2 × R, P (γ) is totally geodesic, and in Nil(3)

and ˜PSL(2,R), P (γ) is a minimal surface with principal curvatures ±τ = ±1/2.
The pullback of F(Ω) by π induces a foliation F of π−1(Ω) by the vertical planes P (γ),

γ ∈ F(Ω).
We remark that when Ω is relatively compact in M2(κ), the space of geodesic foliations of

Ω is infinite dimensional. This also holds when M2(κ) = H2 = Ω.

Definition 2.1. We say Σ is in general position with respect to a foliation F := π−1(F(Ω)) if
each leaf P (γ) of F satisfies one of the following conditions:

• P (γ) meets Σ transversally,

• P (γ) ∩ Σ has a finite number of points where they are tangent and such a point p is
the intersection of some k smooth curves of Σ ∩ P (γ) passing through p, and meeting
transversally at p, k ≥ 2 (see Figure 1)

• P (γ) ∩ Σ contains vertical segments along which they are tangent,

• P (γ) ∩ Σ contains isolated points or is empty.

Figure 1

3 The main result
In this section we shall establish:
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Theorem 3.1. Let Σ be a compact orientable surface immersed in E. Assume the principal
curvatures κi, i = 1, 2, of Σ satisfy κi ≥ τ , τ = 0 in H2 × R and τ = 1/2 in Nil(3) or
˜PSL(2,R).

If Σ is in general position with respect to a foliation F := π−1(F(Ω)), then Σ is an embed-
ded sphere.

We need a preliminary result

Lemma 3.1. Let P and Σ be orientable immersed submanifolds of E that meet transversally
along an immersed curve β. Let κi, i = 1, 2, be the principal curvatures of Σ and τi, i = 1, 2,
those of P . If κ1 ≥ κ2 along β and κ2 ≥ max {|τi| : i = 1, 2}, then the curvature vector of β
in P points to one side of β in P (it may vanish at points of β).

Proof. We use the notation ∇E, ∇Σ, ∇P , IIΣ and IIP to denote the connections and second
fundamental forms of the spaces involved. Let NP and NΣ denote the unit normals to P and Σ,
respectively, defining the κi and τi.

Write
NΣ(β(t)) = e1(t) + e2(t)

along β, where e1 is tangent to P and e2 orthogonal to P . Since P and Σ meet transversally
along β we have e1(t) 6= ~0 for all t.

Also, 〈e1(t), β′(t)〉 = 0 for all t, so e1(t) is a non-zero section of the normal bundle of β in
P . To prove the lemma it suffices to show 〈∇P

β′β′, e1〉(t) ≥ 0 for all t.
By the Gauss equation for Σ and P , we have

∇Eβ′β′ = ∇Σ
β′β′ + IIΣ(β′, β′)NΣ

= ∇P
β′β′ + IIP (β′, β′)NP ,

so
∇P
β′β′ = ∇Σ

β′β′ + IIΣ(β′, β′)NΣ − IIP (β′, β′)NP .

Taking the scalar product with NΣ, we obtain

〈∇P
β′β′, NΣ〉 = IIΣ(β′, β′)− IIP (β′, β′)〈NP , NΣ〉,

the first term IIΣ(β′, β′) is between κ1 and κ2 and the second term, in absolute value, is at most
max {|τi| : i = 1, 2}. Hence, 〈∇P

β′β′, NΣ〉 ≥ 0 along β.
Since∇P

β′β′ is tangent to P andNΣ = e1+e2 with e2 normal to P , we conclude 〈∇P
β′β′, e1〉 ≥

0, as desired.

Proof of Theorem 3.1. We can assume the foliation by vertical planes is parametrized by t and
P (0) is a vertical plane transverse to Σ. Let C(0) ⊂ P (0) ∩ Σ be an immersed closed curve.
Denote by ~k(0) the curvature vector of C(0) in P (0). By Lemma 3.1 and our hypothesis, we
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know that ~k(0) points to one side of C(0) in P (0); we call this the convex side of C(0). For t
near 0, P (t) ∩ Σ contains an immersed closed curve C(t) along which P (t) is transverse to Σ
and C(t) is a smooth variation of C(0). Thus, the convex side of C(0) varies continuously for
t near 0. As t increases, there will be a first t = T where the curves C(t) fail to be a transverse
intersection.

There are several possibilities for C(T ). If C(T ) is a point or an interval, then the curves
C(t), t < T , and t near T , are embedded convex curves in P (t); otherwise Σ would not be an
immersed surface.

Now, a continuous variation of embedded convex curves in a Euclidean plane, among com-
pact convex curves (allowing points of zero curvature along the curve) remains embedded. Thus
the curves C(t) are embedded for all t, 0 ≤ t < T . So C(0) bounds an embedded disk in Σ, the
union of the C(t), 0 ≤ t < T .

In the case (i.e., when C(T ) is a point or interval), consider the curves C(t) for t < 0. There
is then a first accident at some t = T1 where P (T1) is not transverse to Σ along C(T1). Again,
if C(T1) is a point or an interval, we conclude the C(t) are embedded for T1 < t ≤ 0. Hence Σ
is an embedded sphere.

Then to complete the proof, we will show that no other accident can happen at t = T . The
other possibility is C(T ) contains a point p, and there are k branches (smooth) of C(T ) passing
through p. Σ and P (T ) are tangent at p and p is an isolated tangency in a neighborhood. In a
disk neighborhood D of p in Σ, we have the induced foliation of D (singular at p) which has 2k
sectors as in Figure 2.

Figure 2

The curves β of this foliation, that do not pass through p, separate D into 2 components.
Let F (β) denote the component not containing p. For D sufficiently small, there are points of
β (near p), where the curvature vector ~k(β) is not zero and points into F (β).
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Now for t < T , t near T , C(t) ∩D contains such an arc β. So, the curvature vector of C(t)
points into F (β) and is non zero at some point of C(t) near p (see Figure 3).

Figure 3

As t→ T , these arcs of C(t) ∩D converge to the two arcs α1 and α2 meeting at p.
Suppose some point q ∈ α1 ∪ α2, q 6= p, has ~kα(q) 6= ~0, α = α1 or α2, depending in which

q belongs. Then, for t near T , there are points q(t) ∈ C(t) such that ~k(q(t)) 6= ~0. Thus the
convex side of α is the sector bounded by α1 ∪ α2; i.e., the vector ~kα(q) points towards the arc
of C(t) containing q(t) (see Figure 4).

Figure 4

6



Now consider the arcs of Σ ∩ P (s), s > T , s near T , on the other side of α than C(t); let
C(s) denote the arc (see Figure 5).

Figure 5

For z ∈ C(s), z near q, the curvature vector of C(s) at q points towards q by continuity. But
at the points of C(s) near p (for s close enough to T ) the curvature vector points to the other
side of C(s). If we choose s so Σ and P (s) meet transversally, this contradicts the convexity of
C(s).

Thus, there are no points of α1 ∪ α2 of non zero curvature. The same reasoning applies to
the connected component of P (T )∩Σ containing p. We conclude all the arcs of this component
are straight lines. But these straight lines extend through the tangency points of Σ∩P (s). Since
this is impossible, this completes the proof.

Remark 3.1. Suppose Σ is an immersed compact surface in R3 with Ke ≥ 0 and has, at least,
one point at which the extrinsic curvature in strictly positive. Then for almost every line in R3,
the projection of Σ onto the line is a Morse function on Σ, so Σ is in general position with
respect to the foliation by planes orthogonal to the line. Start with a planar foliation coming
from a Morse function so that the strictly convex point is a non degenerate minimum. Then,
the level curves start out convex and embedded. Moreover, note that they can not became non
compact. So, the first accident occurs at a saddle point (see Figure 3). But this can not happen
by arguing as in the proof of Theorem 3.1. Thus, Σ is an embedded sphere and bounds a convex
body in R3. This gives an alternative proof of Van Heijenhoort Theorem [VH] for the closed
case.
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4 An example
In this Section we present a complete noncompact surface in H2×R whose extrinsic curvature is
greater than or equal than zero, and it is not embedded. This example shows that the conditions
on the previous Theorem 3.1 are sharp.

Let us denote by R4
1, the real vector space R4 endowed with linear coordinates (x1, x2, x3, x4)

and the metric 〈, 〉 induced by the quadratic form−x2
1 +x2

2 +x2
3 +x2

4. H2×R will be considered
as the submanifold of the Lorentzian space R4

1, given by

H2 × R = {(x1, x2, x3, x4) ∈ R4 : −x2
1 + x2

2 + x2
3 = −1, x1 > 0}.

Let γ and β be horizontal geodesics parametrized by arc-length, i.e, both geodesic are con-
tained in H2 × {0}, so that they are orthogonal at p = γ(0) = β(0). For simplicity, assume
p = (0, 0, 1). Let ψt be the the one parameter family of isometries generated by translation
along γ, then the trajectories along ψt of a point q ∈ β is either the geodesic γ if q = β(0),
or an equidistant curve to γ if q 6= β(0), denote these curves by γs(t). Set P = β × R, P
is isometrically R2. Let (x, y) cartesian coordinates in P so that x is the arc-length parameter
along β and y is the height, the origin (0, 0) is the point p = β(0) and e1 = (1, 0) = β′(0).
Let α(s) = (r(s), R(s)) be a closed strictly convex immersed curve in P so that the critical
points of R(s) are not inflection points, i.e., if R′(s0) = 0 then R′′(s0) 6= 0, and moreover, if
s0 is a critical point of R, then α(s0) ∈ {0} × R, i.e., it is contained in the y−axis. Then, one
can see that the curvature vector field ~kα(s) along α (with the orientation that makes α convex)
points in the e1 direction if r(s) < 0 and points in the −e1 direction if r(s) > 0. Moreover,
the curvature vector ~ks(t) along γs(t) (with the orientation that makes γs(t) convex, recall they
are either geodesics or equidistant curves) points in the e1 direction if r(s) < 0 and in the −e1

direction if r(s) > 0, also, the curvature vanishes when r(s0) = 0 since, in this case, γs0(t) is
a horizontal geodesic. Thus, from these observations, the surface Σ = ψt(α(s)) has principal
curvatures greater or equals than zero at any point (w.r.t. the inward orientation) and so, Σ is a
locally convex immersed surface in H2 × R. We describe next an explicit example:

Let r, R : R→ R be smooth 4π−periodic functions and consider

ψ(s, t) := (cosh(t) cosh(r(s)), sinh(r(s)), sinh(t) cosh(r(s)), R(s)) .

Given a point p of the horizontal geodesic α(t) = (cosh(t), 0, sinh(t), 0) and the vertical
plane P orthogonal to α at p, then, P ∩ Σ, where Σ is the image of ψ, is nothing but the curve
(r(s), R(s)) in P “centered” at p.

The extrinsic curvature of this immersion is given by

Ke =
tanh(r(s))R′(s) (r′(s)R′′(s)− r′′(s)R′(s))

(r′(s)2 +R′(s)2)2
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Thus, it is not difficult to choose two functions r(s), R(s) such that the pair (r(s), R(s)) is
a non embedded curve and the associated extrinsic curvature is non negative. For instance, if
we take

r(s) := sin
(s

2

)
cos(s), R(s) := cos

(s
2

)
− 1

3
cos

(
3s

2

)
,

the immersion ψ is well defined in the cylinder R/(4πZ) × R and it is not embedded since
ψ(π

2
, t) = ψ(7π

2
, t) (see Figure 6 for the curve (r(s), R(s))). In addition, its extrinsic curvature

Ke = 32
tanh

(
1
2

(
sin

(
s
2

)
− sin

(
3s
2

)))
1
2

(
sin

(
s
2

)
− sin

(
3s
2

))
(5− 4 cos(s) + cos(2s))

(−17 cos(s) + 2 cos(2s) + 5 cos(3s) + 18)2

is non negative because tanh(a) a ≥ 0 for all real number a.

Figure 6
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