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Preliminaries Objective, usefulness, limitations and prior assumptions

Objective and usefulness

The objective of Principal Component Analysis (PCA) is to condense the informa-
tion provided by multiple variables into a few of them or a few linear combinations
of them (with maximum variability).

Its main utility is as a preliminary analysis before applying other statistical techniques
such as regression, clustering, etc.

Limitations

The main drawback of these methods is the difficulty in validating the results.

It is a method highly sensitive to outliers (extreme or atypical values).
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Preliminaries Objective, usefulness, limitations and prior assumptions

Prior assumptions

Correlated variables.

Absence of outliers.
Outliers in any of the variables require a detailed analysis as they influence the final
outcome of dimensionality reduction.

Standardized data (mean 0 and standard deviation 1).
This prevents variables with a larger scale from dominating the others.
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Preliminaries Principal components

What is a principal component?

Principal components are linear combinations of the original variables with maximum
variance and are perpendicular to each other.

In the following section, it will be demonstrated that the coefficients of these linear
combinations are the eigenvectors of the covariance matrix, and their variances will
be the associated eigenvalues of these eigenvectors.

In other words, PCA identifies the directions in which the variance is higher.
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Preliminaries Principal components

Practical calculation of principal components

To obtain the first principal component, an optimization problem is solved to find
the weights (loadings) that maximize the variance.

Once the first component is calculated, the second component is calculated by
repeating the same process, but adding the condition that the linear combination
cannot be correlated with the first component. This is equivalent to saying they must
be orthogonal. The process is iteratively repeated until all possible components
are calculated or until it is decided to stop the process.

The order of importance of the components is determined by the magnitude of the
eigenvalue associated with each eigenvector.

In the next section, it will be justified that one way to solve this optimization problem
is by calculating eigenvectors and eigenvalues of the covariance matrix.
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Preliminaries Principal components

Interpretation of the principal components

The vector defining the first principal component follows the direction in which the
observations vary the most.

The second component follows the direction in which the data exhibit the highest
variance and is uncorrelated with the first one (they are orthogonal directions), and
so on for the third and subsequent principal components.

Proportion of explained variance

How much of the original information is lost when projecting the observations into
a lower-dimensional space? In other words, how much information does each of the
obtained principal components capture?

This information is provided by the proportion of explained variance, as well as the
cumulative proportion of explained variance.

These quantities are very important when deciding on the appropriate number of
principal components.
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Preliminaries Principal components

Appropriate number of principal components

There is no single criterion or method that allows for identifying the optimal number of
principal components to use. Different approaches can include:

Evaluate the cumulative proportion of explained variance and select the minimum
number of components beyond which the increase ceases to be substantial.

Calculate the average of the variances explained by each principal component, and
take as many principal components as the number of variances that exceed this
average.

etc.
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Formal aspects Problem statement

Notations

In this section, a formal justification is provided for how the principal components are
identified with the eigenvectors of the covariance matrix, as well as their variances
being identified with the associated eigenvalues of said vector.

Let X1,X2, . . . ,Xp be a set of p correlated random variables. Let’s denote
X = (X1,X2, . . . ,Xp)t the random vector they define. It is assumed X is centred,
E [X ] = 0, and let’s denote by R = E [XX t ] its covariance matrix.

Let’s consider (no more of p) variables defined by: U1 = at1X , . . . ,Uq = atqX . The
objective pursued is to obtain the suitable a1, . . . , aq ∈ Rp , q ≤ p.

Prior requirements:

- U1 = at1X , . . . ,Uq = atqX must be uncorrelated. This way, redundant information
will be eliminated.

- The variance of each Ui , i ∈ 1, . . . , q is maximum. This way, the new variables will
provide meaningful information.
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Formal aspects Problem statement

Problem statement

Under the aforementioned conditions, the goal is to find U1 = at1X , . . . ,Uq = atqX , mu-
tually uncorrelated, with each Ui having maximum variance among all linear combinations
of X that are uncorrelated with U1 = at1X , . . . ,Ui−1 = ati−1X .

- The variables U1 = at1X , . . . ,Uq = atqX solution to the previous problem are referred
to as the principal components.
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Formal aspects Problem resolution

Problem resolution

As previously mentioned, the resolution of this problem is sequential:

- First, U1 is obtained by imposing that it has maximum variance.

- Next, U2 is obtained by imposing that it has the highest variance among all uncor-
related (orthogonal) linear combinations with U1.

- The same procedure is followed to obtain U3 by now imposing that it has the highest
variance among all linear combinations orthogonal to U1 and U2

- For the rest of the principal components up to Uq, the procedure is the same.

Next, it will be justified how the coefficients of the principal components are the eigen-
vectors of the covariance matrix, associated with the eigenvalues of largest magnitude at
each step.
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Formal aspects Problem resolution

Problem resolution - Step 1

In this first step, we obtain the first principal component, U1, maximizing its variance. To ensure the existence of this
maximum, bounding conditions on the weight vector must be imposed, in this case, that a1 is a unit vector.

maxVar [U1 ]

s.a.||a1 || = at1a1 = 1

Considering that X is a centred random vector, E [X ] =0, then E [at1X ] = 0, which implies that:

Var [U1 ] = E [U2
1 ] = E [at1Xa

t
1X ] = E [at1XX

ta1 ] = at1E [XX
t ]a1 = at1Ra1,

and therefore, the problem becomes as follows,

max
a1

at1Ra1

s.a. at1a1 = 1

Finally, applying the Lagrange Multiplier Theorem for the calculation of constrained extremes, the problem is reduced
to,

max
a1

{at1Ra1 − λ(at1a1 − 1)}
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Formal aspects Problem resolution

Problem resolution - Step 1 (continuation)

Taking the derivative of the above expression with respect to a1 (matrix-wise and considering that R is symmetric)

and setting it to zero,
∂(at1Ra1−λ(at1a1−1))

∂a1
= 0, is obtained,

2Ra1 − 2λa1 = 0 (1)

Remark:

- The derivative of a quadratic form is:
∂(xtAx)

∂x
= (A+At )x such that x ∈ Rn ,A ∈ Mn(R).

It is easy to realize that a1 is the eigenvector associated with λ, the eigenvalue of R, since the previous expression is
written as,

(R − λI )a1 = 0,

which determines the eigensubspace associated with λ. Finally, it is easy to deduce that λ is the variance of U1 since,

Var [U1 ] = at1Ra1 = λat1a1 = λ,

multiplying (1) on the left by at1 and because a1 is unitary.

In conclusion, the first principal component is U1 = at1X with a1 the eigenvector associated with the eigenvalue of R
with the highest magnitude.
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Formal aspects Problem resolution

Problem resolution - Step 2

In this second step, the second principal component, U2, is obtained, uncorrelated with the first principal component
calculated previously, maximizing its variance.

To guarantee the existence of this maximum, bounding conditions must also be imposed on the weight vector, in this
case a2 is also a unit vector.

maxVar [U2 ]

s.a.||a2 || = at2a2 = 1

cov (U1,U2) = 0

Taking into account that X is a centred random vector, E [X ] = 0, then E [at2X ] = 0, which implies that, as before,
Var [U2 ] = at2Ra2.

Likewise cov (U1,U2) = E [at1Xa
t
2X ] = E [at1XX

ta2 ] = at1E [XX
t ]a2 = at1Ra2 and therefore the problem is as follows,

max
a2

at2Ra2

s.a. at2a2 = 1

at1Ra2 = 0

Finally, applying the Lagrange Multiplier Theorem for the calculation of constrained extremes, the problem is reduced
to,

max
a2

{at2Ra2 − λ(at2a2 − 1)− µat1Ra2}

©José L. Romero (jlrbejar@ugr.es) Principal component analysis (PCA) 18 / 25



Formal aspects Problem resolution

Problem resolution - Step 2 (continuation)

Taking the derivative of the above expression with respect to a2 (matrix-wise and considering that R is symmetric)
and setting it to zero, is obtained,

2Ra2 − 2λa2 − µRa1 = 0

Remark:

- The derivative of a linear form is:
∂(atx)

∂x
= a such that a, x ∈ Rn.

Multiplying this expression on the left by at1, it is derived,

2at1Ra2 − 2λat1a2 − µat1Ra1 = 0

Considering that at1Ra2 = 0 (it’s the second constraint of the problem), at1a2 = 0 (they are perpendicular), and
at1Ra1 ̸= 0, the expression becomes µat1Ra1 = 0, from which we deduce that µ = 0.
So the equation to solve is

2Ra2 − 2λa2 = 0 → (R − λI )a2 = 0, (2)

from which it is again deduced that a2 is the eigenvector associated with the eigenvalue λ of the matrix R.

In the same way, Var [U2 ] = at2Ra2 = λat2a2 = λ, multiplying the previous equation on the left by at2 and considering
that a2 is unitary.

In conclusion, the second principal component is U2 = at2X , where a2 is the eigenvector associated with the second
eigenvalue of largest magnitude of matrix R.
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Formal aspects Problem resolution

Problem resolution - Step 3 and onwards

In this third step, the third principal component, U3, uncorrelated with the previously calculated first and second
principal components, is obtained by maximizing its variance.

To ensure the existence of this maximum, bounding conditions on the weight vector must also be imposed, in this
case, that a3 is also a unit vector.

maxVar [U3 ]

s.a.||a3 || = at3a3 = 1

cov (U1,U3) = 0

cov (U2,U3) = 0

Voluntary task: to justify that a3 is the eigenvector associated with the third eigenvalue
of largest magnitude of matrix R.
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Practices with R language PCA Practice 1.1

Práctica 1.1 de ACP

In this practice, a first example of dimensionality reduction is performed on a dataset.
To complete it, you need to download and run the file Practice_1.1_PCA.R available
on the PRADO platform.

Topics covered:

- Conducting a preliminary exploratory analysis of the data to identify possible missing
data (NA - not available) and outliers.

- Making decisions and handling missing data and outliers.

- Performing a PCA (Principal Component Analysis)

- Initial methods for choosing the optimal number of principal components.

- Interpretation of various interesting graphical outputs for this method.

- R language: loading data from an R package, data.frame object, graphical treatment
of data, and construction of procedures or functions.
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Practices with R language PCA Practice 1.2

PCA Practice 1.2

In this practice, a second example of dimensionality reduction is performed on a dataset.
To complete it, you need to download and run the file Practice_1.2_PCA.R available
on the PRADO platform.

The emphasis will be on:

Conducting a preliminary exploratory analysis of the data to identify possible missing
data and outliers.

Making decisions and handling missing data and outliers.

Performing a PCA (Principal Component Analysis).

Choosing the optimal number of principal components.

Interpretation of various interesting graphical outputs for this method.

R language: RMarkdown notebook, loading external data files, methods apply,
tapply, width, by, etc. for function debugging.

Moving towards the final report.
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