El famoso teorema sobre la imposibilidad de encontrar una fórmula para resolver tales ecuaciones fue enunciado por primera vez por el matemático y médico italiano Paolo Ruffini (v.) en el libro Teoria generale delle equazioni, publicado en Bolonia en 1798. La demostración de Ruffini fue, sin embargo, incompleta. La primera demostración rigurosa fue dada en 1826 en el primer volumen del Crelle's Journal fur Mathematik por el joven matemático noruego Niels Henrik Abel (1802-1829) a los veinticuatro años. Este célebre artículo llevaba por título Démostration de l'impossibilité de la résolution algébraíque de équations générales qui dépassent le quatrième deqrè.
|
Egipto |
|
Eratóstenes de Cirene |
(275-194 a.C.) Sabio griego nacido en la actual Libia, quien en el siglo III a.C. calculó por primera vez, que se sepa, el radio de la Tierra. Partiendo de la idea de que la Tierra tiene forma esférica y que el Sol se encuentra tan alejado de ella que se puede considerar que los rayos solares llegan a la Tierra paralelos, Eratóstenes el día del solsticio de verano (21 de junio), a las doce de la mañana, midió, en Alejandría, con ayuda de una varilla colocada sobre el suelo, el ángulo de inclinación del Sol, que resultó ser 7,2°; es decir, 360º/50. Al mismo tiempo sabía que en la ciudad de Siena (actual Assuán, en que se construyó recientemente la gran presa de Assuán sobre el curso del río Nilo), los rayos del sol llegaban perpendicularmente al observar que se podía ver el fondo de un pozo profundo. La distancia de Alejandría a Siena situada sobre el mismo meridiano era de 5000 estadios (1 estadio = 160 m). Entonces Eratóstenes pensó que dicha distancia sería igual a 1/50 de toda la circunferencia de la Tierra; por tanto, la circunferencia completa medía: 50
× 5.000 = 250.000 estadios = 250.000 × 160 m = 40.000 km De
donde el radio de la Tierra medía: R = 40.000 / 2Pi = 6.366,19 km. Las
actuales mediciones sobre el radio de la Tierra dan el valor de 6.378 km. Como se puede observar se trata de una extraordinaria exactitud, si se tienen en cuenta los escasos medios de que se disponía. Hoy
día, gracias a las mediciones efectudas por los satélites conocemos la Tierra palmo a palmo y podemos saber con precisión casi milimétrica cuál es su tamaño. Pero hace veintitrés siglos no era tan fácil. Medir
el radio de la Tierra no fue el único mérito de Eratóstenes. Como otros sabios de su época, no se conformó con una rama del saber: Fue astrónomo, geógrafo, historiador, literato... y matemático: a él se debe la "criba de Eratóstenes", un sistema para determinar números primos. Todos
esos conocimientos y su gran reputación hicieron que el Rey de Egipto le eligiera para dirigir la Biblioteca de Alejandría, en la que se guardaba todo el saber de su época. |
|
Euclides |
Son muy escasas las noticias históricas que se tienen sobre la vida de Euclides. Proclo dice que vivió en el período 306-285 aC, en tiempos de Ptolomeo I, quién le invitó al museo de Alejandría. Con bastante seguridad, parece que se puede afirmar que Euclides estudió en Atenas, donde conoció los últimos resplandores de su foco científico, pasando luego a Alejandría bajo la protección de los lágidas. Su obra más notable, a la cual debe su inmortalidad, es la titulada Elementos, que equivale a lo que hoy sería un tratado y que ha llegado íntegra hasta nuestros días. Los Elementos rivalizan, por su difusión, con los libros más famosos de la literatura universal: la Biblia, La divina comedia, el Fausto y el Quijote, privilegio tanto más excepcional en cuanto que se trata de una producción científica, no asequible, por tanto, a las grandes masas de lectores. Después de la Biblia y las obras de Lenin, los Elementos ha sido el libro que ha tenido más ediciones y se ha traducido a más lenguas. El rey egipcio Ptolomeo I (306-283 a.C.) empezó a leerlo, pero se cansó enseguida porque le costaba mucho trabajo seguir los largos y minuciosos razonamientos. Mandó llamar a Euclides y le preguntó si existía alguna vía más corta y menos trabajosa. Euclides respondió que no, que «en matemáticas no hay caminos reales». Los Elementos fueron traducidos al latín por Adelardo de Bath y Gerardo de Cremona. La
actitud actual en las matemáticas se parece al espíritu clásico de Euclides en el sentido de que creemos que basta con la inteligencia para toda creación científica cuyo desarrollo se verifica según un proceso puramente racional. Si cambiamos o suprimimos coherentemente algunos postulados podremos seguir obteniendo geometrías coherentes. Éste no es un problema fácil, ya que es complicado decidir sobre la necesidad o no de un postulado o sobre su dependencia de otro u otros. A lo largo de la historia se ha visto como muchos matemáticos han intentado, en vano, probar que el famoso quinto postulado de Euclides era una consecuencia de los restantes. No fue hasta mediados del siglo pasado cuando se vio la independencia de todos los postulados y la posibilidad de la construcción de nuevas geometrías. Habían nacido así las geometrías no euclídeas (elíptica e hiperbólica) con la misma consistencia que la euclídea, pero independientes de ésta. Los
Elementos constan de trece libros, a los que casi todos los editores agregan otros dos, cuya autenticidad es dudosa. De lo que no cabe duda alguna es de que la historia de los Elementos es la historia de la geometría, desde su redacción hasta el Renacimiento. Pero
Euclides no sólo se dedicó a la geometría. Se habían definido los números primos y Euclides demostró que había infinitos, aunque debido a la inexistencia de un sistema de numeración adecuado le habría resultado dificil dar ejemplos de números primos relativamente grandes, por ejemplo, superiores a un millón. Notemos que para los griegos los números superiores a diez mil eran ya prácticamente inmanejables, debido a los métodos de cálculo rudimentarios y enojosos que utilizaban.
|
Euler |
Leonard Euler (1707-1783), matemático suizo, simbolizó en 1777 la raíz cuadrada de -1 con la letra i (inicial de imaginario). Ese mismo año nacía Carl Friedrich Gauss (1777-1855), que dio una interpretación geométrica a los números complejos ¿Casualidad?. (v. Recta de Euler). Demostró el teorema de Fermat (v.) para n=3, pero cometió un grave error. |