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Abstract. In these notes we present some aspects of the basic theory on
the geometry of a three-dimensional simply-connected Lie group X endowed
with a left invariant metric. This material is based upon and extends some
of the results of Milnor in [49]. We then apply this theory to study the
geometry of constant mean curvature H ≥ 0 surfaces in X, which we call
H-surfaces. The focus of these results on H-surfaces concerns our joint on
going research project with Pablo Mira and Antonio Ros to understand the
existence, uniqueness, embeddedness and stability properties of H-spheres in
X. To attack these questions we introduce several new concepts such as the
H-potential of X, the critical mean curvature H(X) of X and the notion of an
algebraic open book decomposition of X. We apply these concepts to classify
the two-dimensional subgroups of X in terms of invariants of its metric Lie
algebra, as well as classify the stabilizer subgroup of the isometry group of X

at any of its points in terms of these invariants. We also calculate the Cheeger
constant for X to be Ch(X) = trace(A), when X = R

2
�A R is a semidirect

product for some 2 × 2 real matrix; this result is a special case of a more
general theorem by Peyerimhoff and Samiou [52]. We also prove that in this
semidirect product case, Ch(X) = 2H(X) = 2I(X) where I(X) is the infimum
of the mean curvatures of isoperimetric surfaces in X. The last material that
we cover includes some techniques and results for describing the asymptotic
behavior of H-surfaces in X based on the Dynamics Theorem of Meeks, Pérez
and Ros [37, 38] and a different version by Meeks and Tinaglia in [47]. In the
last section, we discuss a variety of unsolved problems for H-surfaces in X.
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1. Introduction.

This manuscript covers some of the material given in three lectures by the first
author at the RSME School Luis Santaló on Geometric Analysis which took place
in the summer of 2010 at the University of Granada. The material covered in these
lectures concerns an active branch of research in the area of surface geometry in
simply-connected, three-dimensional homogeneous spaces, especially when surface
is two-sided and has constant mean curvature H ∈ R. After appropriately orienting
such a surface with constant mean curvature H, we will assume H ≥ 0 and will
refer to the surface as an H-surface.

We next briefly explain the contents of the three lectures in the course. The
first lecture introduced the notation, definitions and examples, as well as the ba-
sic tools. Using the Weierstrass representation for minimal surfaces (H = 0) in
Euclidean three-space R

3, we explained how to obtain results about existence of
complete, proper minimal immersions in domains of R

3 with certain restrictions
(this is known as the Calabi-Yau problem). We also explained how embeddedness
influences dramatically the Calabi-Yau problem, with results such as the Minimal
Lamination Closure Theorem. Other important tools covered in the first lecture
were the curvature estimates of Meeks and Tinaglia for embedded H-disks away
from their boundary when H > 0, the Dynamics Theorem due to Meeks, Pérez
and Ros [37, 38] and a different version of this last result due to Meeks and
Tinaglia [47], and the notion of a CMC foliation, which is a foliation of a Rie-
mannian three-manifold by surfaces of constant mean curvature, where the mean
curvature can vary from leaf to leaf.

The second lecture introduced complete, simply-connected, homogeneous three-
manifolds and the closely related subject of three-dimensional Lie groups equipped
with a left invariant metric; in short, metric Lie groups. We presented the basic
examples and focused on the case of a metric Lie group that can be expressed as a
semidirect product. These metric semidirect products comprise all non-unimodular
ones, and in the unimodular family they consist of (besides the trivial case of R

3)
the Heisenberg group Nil3, the universal cover �E(2) of the group of orientation
preserving isometries of R

2 and the solvable group Sol3, each group endowed with
an arbitrary left invariant metric. We then explained how to classify all simply-
connected, three-dimensional metric Lie groups, their two-dimensional subgroups
and their isometry groups in terms of algebraic invariants associated to their metric
Lie algebras.

The third lecture was devoted to understanding H-surfaces, and especially H-
spheres, in a three-dimensional metric Lie group X. Two questions of interest here
are how to approach the outstanding problem of uniqueness up to ambient isometry
for such an H-sphere and the question of when these spheres are embedded. With
this aim, we develop the notions of the H-potential of X and of an algebraic open

book decomposition of X, and described a recent result of Meeks, Mira, Pérez and
Ros where they prove embeddedness of immersed spheres (with non-necessarily
constant mean curvature) in such an X, provided that X admits an algebraic
open book decomposition and that the left invariant Lie algebra Gauss map of
the sphere is a diffeomorphism. This embeddedness result is closely related to the
aforementioned problem of uniqueness up to ambient isometry for an H-sphere in
X. We also explained a result which computes the Cheeger constant of any metric
semidirect product in terms of invariants of its metric Lie algebra. The third lecture
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finished with a brief presentation of the main open problems and conjectures in this
field of H-surfaces in three-dimensional homogeneous Riemannian manifolds.

These notes will cover in detail the contents of the second and third
lectures. This material depends primarily on the classical work of Milnor [49] on
the classification of simply-connected, three-dimensional metric Lie groups X and
on recent results concerning H-spheres in X by Daniel and Mira [14], Meeks [30],
and Meeks, Mira, Pérez and Ros [32].

2. Lie groups and homogeneous three-manifolds.

We first study the theory and examples of geometries of homogeneous n-
manifolds.

Definition 2.1. (1) A Riemannian n-manifold X is homogeneous if the
group I(X) of isometries of X acts transitively on X.

(2) A Riemannian n-manifold X is locally homogenous if for each pair of points
p, q ∈ X, there exists an ε = ε(p, q) > 0 such that the metric balls B(p, ε),
B(q, ε) ⊂ X are isometric.

Clearly every homogeneous n-manifold is complete and locally homogeneous,
but the converse of this statement fails to hold. For example, the hyperbolic plane
H

2 with a metric of constant curvature −1 is homogeneous but there exists a con-
stant curvature −1 metric on any compact surface of genus g > 1 such that the
related Riemannian surface Mg is locally isometric to H

2. This Mg is a complete
locally homogeneous surface but since the isometry group of Mg must be finite,
then M is not homogeneous. In general, for n ≤ 4, a locally homogeneous n-
manifold X is locally isometric to a simply-connected homogeneous n-manifold �X
(see Patrangenaru [51]). However, this property fails to hold for n ≥ 5 (see Kowal-
ski [25]). Still we have the following general result when X is complete and locally
homogeneous, whose proof is standard.

Theorem 2.2. If X is a complete locally homogeneous n-manifold, then the

universal cover �X of X, endowed with the pulled back metric, is homogeneous. In

particular, such an X is always locally isometric to a simply-connected homogeneous

n-manifold.

Many examples of homogeneous Riemannian n-manifolds arise as Lie groups
equipped with a metric which is invariant under left translations.

Definition 2.3. (1) A Lie group G is a smooth manifold with an alge-
braic group structure, whose operation ∗ satisfies that (x, y) �→ x−1∗y is a
smooth map of the product manifold G×G into G. We will frequently use
the multiplicative notation xy to denote x ∗ y, when the group operation
is understood.

(2) Two Lie groups, G1, G2 are isomorphic if there is a smooth group isomor-
phism between them.

(3) The respective left and right multiplications by a ∈ G are defined by:

la : G → G,
a �→ ax,

ra : G → G
a �→ xa.

(4) A Riemannian metric on G is called left invariant if la is an isometry for
every a ∈ G. The Lie group G together with a left invariant metric is
called a metric Lie group.
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In a certain generic sense [26], for each dimension n �= 2, simply-connected Lie
groups with left invariant metrics are “generic” in the space of simply-connected
homogeneous n-manifolds. For example, in dimension one, R with its usual ad-
ditive group structure and its usual metric is the unique example. In dimension
two we have the product Lie group R

2 = R × R with its usual metric as well as a
unique non-commutative Lie group all of whose left invariant metrics have constant
negative curvature; we will denote this Lie group by H

2 (in Example 2.8 below it
is shown that the usual hyperbolic n-space H

n is isometric to the Lie group of
similarities1 of R

n−1 endowed with some left invariant metric; motivated by the
fact that this last Lie group only admits left invariant metrics of constant negative
curvature, we let H

n denote this group of similarities of R
n−1). On the other hand,

the two-spheres S
2(k) with metrics of constant positive curvature k are examples of

complete, simply-connected homogeneous surfaces which cannot be endowed with
a Lie group structure (the two-dimensional sphere is not parallelizable). Regard-
ing dimension three, we shall see in the next result that simply-connected, three-
dimensional metric Lie groups are “generic” in the space of all simply-connected
homogeneous three-manifolds. For the sake of completeness, we include a sketch of
the proof of this result.

Regarding the following statement of Theorem 2.4, we remark that a simply-
connected, homogeneous Riemannian three-manifold can be isometric to more than
one Lie group equipped with a left invariant metric. In other words, non-isomorphic
Lie groups might admit left invariant metrics which make them isometric as Rie-
mannian manifolds. This non-uniqueness property can only occur in the following
three cases:

• The Riemannian manifold is isometric to R
3 with its usual metric: the

universal cover �E(2) of the group of orientation-preserving rigid motions
of the Euclidean plane, equipped with its standard metric, is isometric to
the flat R

3, see item (1-b) of Theorem 2.14.
• The Riemannian manifold is isometric to H

3 with a metric of constant neg-
ative curvature: every non-unimodular three-dimensional Lie group with
D-invariant D > 1 admits such a left invariant metric, see Lemma 2.13
and item (1-a) of Theorem 2.14.

• The Riemannian manifold is isometric to certain simply-connected ho-
mogeneous Riemannian three-manifolds E(κ, τ) with isometry group of
dimension four (with parameters κ < 0 and τ �= 0; these spaces will be
explained in Section 2.6): the (unique) non-unimodular three-dimensional
Lie group with D-invariant equal to zero admits left invariant metrics
which are isometric to these E(κ, τ)-spaces, see item (2-a) of Theorem 2.14.
These spaces E(k, τ) are also isometric to the universal cover �SL(2, R) of
the special linear group SL(2, R) equipped with left invariant metrics,
where two structure constants for its unimodular metric Lie algebra are
equal, see Figure 3.

The proof of the next theorem can be modified to demonstrate that if X1 and
X2 are two connected, isometric, n-dimensional metric Lie groups whose (common)
isometry group I(X) is n-dimensional, and we denote by I0(X) the component of

1By a similarity we mean the composition of a homothety and a translation of R
n−1.
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the identity in I(X), then X1 and X2 are isomorphic to I0(X), and hence isomorphic
to each other.

Theorem 2.4. Except for the product manifolds S
2(k) × R, where S

2(k) is a

sphere of constant curvature k > 0, every simply-connected, homogeneous Riemann-

ian three-manifold is isometric to a metric Lie group.

Sketch of the Proof. We first check that the homogeneous three-manifold
Y = S

2(k)×R is not isometric to a three-dimensional metric Lie group. Arguing by
contradiction, suppose Y has the structure of a three-dimensional Lie group with
a left invariant metric. Since Y is a Riemannian product of a constant curvature
two-sphere centered at the origin in R

3 with the real line R, then SO(3) × R is
the identity component of the isometry group of Y , where SO(3) acts by rotation
on the first coordinate and R acts by translation on the second coordinate. Let
F : S

2(k) × R → SO(3) × R be the injective Lie group homomorphism defined by
F (y) = ly and let Π : SO(3) × R → SO(3) be the Lie group homomorphism given
by projection on the first factor. Thus, (Π ◦ F )(Y ) is a Lie subgroup of SO(3).
Since the kernel of Π is isomorphic to R and F (ker(Π ◦ F )) is contained in ker(Π),
then F (ker(Π ◦ F )) is either the identity element of SO(3)×R or an infinite cyclic
group. As F is injective, then we have that ker(Π◦F ) is either the identity element
of Y or an infinite cyclic subgroup of Y . In both cases, the image of (Π◦F )(Y ) is a
three-dimensional Lie subgroup of SO(3), hence (Π◦F )(Y ) = SO(3). Since Y is not
compact and SO(3) is compact, then ker(Π ◦ F ) cannot be the identity element of
Y . Therefore ker(Π ◦F ) is an infinite cyclic subgroup of Y and Π ◦F : Y → SO(3)
is the universal cover of SO(3). Elementary covering space theory implies that
the fundamental group of SO(3) is infinite cyclic but instead, SO(3) has finite
fundamental group Z2. This contradiction proves that S

2(k) × R is not isometric
to a three-dimensional metric Lie group.

Let X denote a simply-connected, homogeneous Riemannian three-manifold
with isometry group I(X). Since the stabilizer subgroup of a point of X under
the action of I(X) is isomorphic to a subgroup of the orthogonal group O(3), and
the dimensions of the connected Lie subgroups of O(3) are zero, one or three, then
it follows that the Lie group I(X) has dimension three, four or six. If I(X) has
dimension six, then the metric on X has constant sectional curvature and, after
homothetic scaling is R

3, S
3 or H

3 with their standard metrics, all of which admit
some Lie group structure that makes this standard metric a left invariant metric.
If I(X) has dimension four, then X is isometric to one of the Riemannian bundles
E(κ, τ) over a complete, simply-connected surface of constant curvature κ ∈ R and
bundle curvature τ ∈ R, see e.g., Abresch and Rosenberg [2] or Daniel [11] for a
discussion about these spaces. Each of these spaces has the structure of some metric
Lie group except for the case of E(κ, 0), κ > 0, which is isometric to S

2(κ)× R.
Now assume I(X) has dimension three and denote its identity component by

I0(X). Choose a base point p0 ∈ X and consider the map φ : I0(X) → X given
by φ(h) = h(p0). We claim that φ is a diffeomorphism. To see this, consider the
stabilizer S of p0 in I0(X), which is a discrete subgroup of I0(X). The quotient
I0(X)/S is a three-dimensional manifold which is covered by I0(X) and the map
φ factorizes through I0(X)/S producing a covering space I0(X)/S → X. Since
X is simply-connected, then both of the covering spaces I0(X) → I0(X)/S and
I0(X)/S → X are trivial and in particular, S is the trivial group. Hence, φ is
a diffeomorphism and X can be endowed with a Lie group structure. Clearly,
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the original metric on X is nothing but the left invariant extension of the scalar
product at the tangent space Tp0X and the point p0 plays the role of the identity
element. �

Definition 2.5. (1) Given elements a, p in a Lie group G and a tangent
vector vp ∈ TpG, avp (resp. vpa) denotes the vector (la)∗(vp) ∈ TapG
(resp. vpa = (ra)∗(vp) ∈ TpaG) where (la)∗ (resp. (ra)∗) denotes the
differential of la (resp. of ra).

(2) A vector field X on G is called left invariant if X = aX, for every a ∈ G,
or equivalently, for each a, p ∈ G, Xap = aXp. X is called right invariant

if X = Xa for every a ∈ G.
(3) L(G) denotes the vector space of left invariant vector fields on G, which

can be naturally identified with the tangent space TeG at the identity
element e ∈ G.

(4) g = (L(G), [, ]) is a Lie algebra under the Lie bracket of vector fields, i.e.,
for X,Y ∈ L(G), then [X,Y ] ∈ L(G). g is called the Lie algebra of G. If
G is simply-connected, then g determines G up to isomorphism, see e.g.,
Warner [59].

For each X ∈ g, the integral curve γX of X passing through the identity is the
image of a 1-parameter subgroup of G, i.e., there is a group homomorphism

exp
Xe

: R → γX(R) ⊂ G,

which is determined by the property that the velocity vector of the curve α(t) =
exp

Xe
(t) at t = 0 is Xe. Note that the image subgroup exp

Xe
(R) is isomorphic

to R when exp
Xe

is injective or otherwise it is isomorphic to S
1 = R/Z. When G

is a subgroup of the general linear group2 Gl(n, R), then g can be identified with
some linear subspace of Mn(R) = {n×n matrices with real entries} which is closed
under the operation [A, B] = AB−BA (i.e., the commutator of matrices is the Lie
bracket), and in this case given A = Xe ∈ TeG, one has

exp
Xe

(t) = exp(tA) =
∞�

n=0

tnAn

n!
∈ γX(R).

This explains the notation for the group homomorphism exp
Xe

: R → G. In general,
we let exp: TeG = g → G be the related map exp(X) = γX(1).

Given an X ∈ g with related subgroup γX ⊂ G, then X is the velocity vec-
tor field associated to the 1-parameter group of diffeomorphisms {rγX(t) | t ∈ R}
obtained by letting γX(R) act on G from the right, i.e., the derivative at t = 0 of
p γX(t) is Xp, for each p ∈ G. Analogously, the derivative at t = 0 of γX(t) p is
the value at every p ∈ G of the right invariant vector field Y on G determined by
Ye = Xe.

Recall that a Riemannian metric on G is called left invariant if for all a ∈ G,
la : G → G is an isometry of G. In this case, (G, �, �) is called a metric Lie group.

Each such left invariant metric on G is obtained by taking a inner product �, �e on
TeG and defining for a ∈ G and v, w ∈ TaG, �v, w�a = �a−1v, a−1w�e.

2Every finite dimensional Lie algebra is isomorphic to a subalgebra of the Lie algebra Mn(R)
of Gl(n, R) for some n (this is Ado’s theorem, see e.g., Jacobson [19]). In particular, every
simply-connected Lie group G is a covering group of a Lie subgroup of Gl(n, R).
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The velocity field of the 1-parameter group of diffeomorphisms {lγX(t) | t ∈ R}
obtained by the left action of γX(R) on G defines a right invariant vector field KX ,
where KX

e
= Xe. Furthermore, the vector field KX is a Killing vector field for

any left invariant metric on G, since the diffeomorphisms lγX(t) are in this case
isometries for all t ∈ R.

Every left invariant metric on a Lie group is complete. Also recall that the
fundamental group π1(G) of a connected Lie group G is always abelian. Further-
more, the universal cover �G with the pulled back metric is a metric Lie group and
the natural covering map Π : �G → G is a group homomorphism whose kernel can
be naturally identified with the fundamental group π1(G). In this way, π1(G) can
be considered to be an abelian normal subgroup of �G and G = �G/π1(G) (compare
this last result with Theorem 2.2).

We now consider examples of the simplest metric Lie groups.

Example 2.6. The Euclidean n-space. The set of real numbers R with its
usual metric and group operation + is a metric Lie group. In this case, both g and
the vector space of right invariant vector fields are just the set of constant vector
fields vp = (p, t), p ∈ R, where we consider the tangent bundle of R to be R × R.
Note that by taking v = (0, 1) ∈ T0R, exp

v
= 1R : R → R is a group isomorphism.

In fact, (R,+) is the unique simply-connected one-dimensional Lie group.
More generally, R

n is a Lie group with trivial Lie algebra (i.e., [, ] = 0). In this
case, the same description of g and exp = 1Rn holds as in the case n = 1.

Example 2.7. Two-dimensional Lie groups. A homogeneous Riemannian
surface is clearly of constant curvature. Hence a simply-connected, two-dimensional
metric Lie group G must be isometric either to R

2 or to the hyperbolic plane H
2(k)

with a metric of constant negative curvature −k. This metric classification is also
algebraic: since simply-connected Lie groups are determined up to isomorphism by
their Lie algebras, this two-dimensional case divides into two possibilities: either
the Lie bracket is identically zero (and the only example is (R2,+)) or [, ] is of the
form

(2.1) [X,Y ] = l(X)Y − l(Y )X, X, Y ∈ g,

for some well-defined non-zero linear map l : g → R. In this last case, it is not
difficult to check that the Gauss curvature of every left invariant metric on G is
−�l�2 < 0; here �l� is the norm of the linear operator l with respect to the chosen
metric. Note that although l does not depend on the left invariant metric, �l�2
does. In fact, this property is independent of the dimension: if the Lie algebra g
of an n-dimensional Lie group G satisfies (2.1), then every left invariant metric on
G has constant sectional curvature −�l�2 < 0 (see pages 312-313 of Milnor [49] for
details).

Example 2.8. Hyperbolic n-space. For n ≥ 2, the hyperbolic n-space H
n

is naturally a non-commutative metric Lie group: it can be seen as the group of
similarities of R

n−1, by means of the isomorphism

(a, an) ∈ H
n �→ φ(a,an) : R

n−1 → R
n−1

x �→ anx + a

where we have used the upper halfspace model {(a, an) | a ∈ R
n−1, an > 0} for H

n.
Since equation (2.1) can be shown to hold for the Lie algebra of H

n, it follows that
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every left invariant metric on H
n has constant negative curvature. We will revisit

this example as a metric semidirect product later.

Example 2.9. The special orthogonal group.

SO(3) = {A ∈ Gl(3, R) | A ·AT = I3, detA = 1},
where I3 is the 3 × 3 identity matrix, is the group of rotations about axes pass-
ing through the origin in R

3, with the natural multiplicative structure. SO(3) is
diffeomorphic to the real projective three-space and its universal covering group
corresponds to the unit sphere S

3 in R
4 = {a + b i + c j + dk | a, b, c, d ∈ R}, con-

sidered to be the set of unit length quaternions. Since left multiplication by a unit
length quaternion is an isometry of R

4 with its standard metric, the restricted met-
ric on S

3 with constant sectional curvature 1 is a left invariant metric. As SO(3)
is the quotient of S

3 under the action of the normal subgroup {±Id4}, then this
metric descends to a left invariant metric on SO(3).

Let T1(S2) = {(x, y) ∈ R
3 × R

3 | �x� = �y� = 1, x ⊥ y} be the unit tangent
bundle of S

2, which can be viewed as a Riemannian submanifold of TR
3 = R

3×R
3.

Given λ > 0, the metric gλ =
�3

i=1 dx2
i

+ λ
�3

i=1 dy2
i
, where x = (x1, x2, x3),

y = (y1, y2, y3) defines a Riemannian submersion from (T1(S2), gλ) into S
2 with its

usual metric. Consider the diffeomorphism F : SO(3) → T1(S2) given by

F (c1, c2, c3) = (c1, c2),

where c1, c2, c3 = c1 × c2 are the columns of the corresponding matrix in SO(3).
Then gλ lifts to a Riemannian metric on SO(3) ≡ S

3/{±Id4} via F and then it
also lifts to a Riemannian metric �gλ on S

3. Therefore (S3, �gλ) admits a Riemannian
submersion into the round S

2, and hence (S3, �gλ) is isometric to one of the Berger
spheres (i.e., to one of the spaces E(κ, τ) with κ = 1 to be explained in Section 2.6).
�gλ produces the round metric on S

3 precisely when the length with respect to gλ

of the S
1-fiber above each x ∈ S

2 is 2π.
The 1-parameter subgroups of SO(3) are the circle subgroups given by all

rotations around some fixed axis passing through the origin in R
3.

2.1. Three-dimensional metric semidirect products. Generalizing di-
rect products, a semidirect product is a particular way of cooking up a group
from two subgroups, one of which is a normal subgroup. In our case, the normal
subgroup H will be two-dimensional, hence H is isomorphic to R

2 or H
2, and the

other factor V will be isomorphic to R. As a set, a semidirect product is nothing
but the cartesian product of H and V , but the operation is different. The way of
gluing different copies of H is by means of a 1-parameter subgroup ϕ : R → Aut(H)
of the automorphism group of H, which we will denote by

ϕ(z) = ϕz : H → H
p �→ ϕz(p),

for each z ∈ R. The group operation of the semidirect product H �ϕ V is given by

(2.2) (p1, z1) ∗ (p2, z2) = (p1 � ϕz1(p2), z1 + z2),

where �,+ denote the operations in H and V , respectively.
In the sequel we will focus on the commutative case for H, i.e., H ≡ R

2 (see
Corollary 3.7 for a justification). Then ϕ is given by exponentiating some matrix
A ∈ M2(R), i.e., ϕz(p) = ezAp, and we will denote the corresponding group by
R

2
�A R. Let us emphasize some particular cases depending on the choice of A:
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• A = 0 ∈ M2(R) produces the usual direct product of groups, which in
our case is R

3 = R
2 × R (analogously, if H ≡ H

2 and we take the group
morphism ϕ : R → Aut(H) to be identically ϕ(z) = 1H , then one gets
H

2 × R).
• Taking A = I2 where I2 is the 2× 2 identity matrix, then ezA = ezI2 and

one recovers the group H
3 of similarities of R

2. In one dimension less, this
construction leads to H

2 by simply considering A to be the identity 1× 1
matrix (1), and the non-commutative operation ∗ on H = H

2 = R �(1) R

is
(x, y) ∗ (x�, y�) = (x + eyx�, y + y�).

• The map

(2.3) (x, y) ∈ R �(1) R
Φ�→ (x, ey) ∈ (R2)+

gives an isomorphism between R �(1) R and the upper halfspace model
for H

2 with the group structure given in Example 2.8. This isomorphism
is useful for identifying the orbits of 1-parameter subgroups of R �(1) R.
For instance, the orbits of points under left or right multiplication by the
1-parameter normal subgroup R �(1) {0} are the horizontal straight lines
{(x, y0) | x ∈ R} for any y0 ∈ R, which correspond under Φ to parallel
horocycles in (R2)+ (horizontal straight lines). The orbits of points under
right (resp. left) multiplication by the 1-parameter (not normal) subgroup
{0} �(1) R are the vertical straight lines {(x0, y) | y ∈ R} (resp. the
exponential graphs {(x0ey, y) | y ∈ R}) for any x0 ∈ R, which correspond
under Φ to vertical geodesics in (R2)+ (resp. into half lines starting at
the origin �0 ∈ R

2).
Another simple consequence of this semidirect product model of H

2 is
that H

2 ×R can be seen as (R �(1) R)×R. It turns out that the product
group H

2 ×R can also be constructed as the semidirect product R
2

�A R

where A =
�

1 0
0 0

�
. The relation between these two models of H

2 × R

is just a permutation of the second and third components, i.e., the map

(x, y, z) ∈ (R �(1) R)× R �→ (x, z, y) ∈ R
2

�A R

is a Lie group isomorphism.

• If A =
�

0 −1
1 0

�
, then ezA =

�
cos z − sin z
sin z cos z

�
and R

2
�A R = �E(2),

the universal cover of the group of orientation-preserving rigid motions of
the Euclidean plane.

• If A =
�
−1 0
0 1

�
, then ezA =

�
e−z 0
0 ez

�
and R

2
�A R = Sol3 (a

solvable group), also known as the group E(1, 1) of orientation-preserving
rigid motions of the Lorentz-Minkowski plane.

• If A =
�

0 1
0 0

�
, then ezA =

�
1 z
0 1

�
and R

2
�A R = Nil3, which is

the Heisenberg group of nilpotent matrices of the form




1 a c
0 1 b
0 0 1



.
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2.2. Left and right invariant vector fields and left invariant metrics on
a semidirect product. So far we have referred to the Lie group structures rather
than to the left invariant metrics that each group structure carries. Obviously, a left
invariant metric is determined by declaring a choice of a basis of the Lie algebra as
an orthonormal set, although different left invariant basis can give rise to isometric
left invariant metrics. Thus, our next goal is to determine a canonical basis of the
left invariant (resp. right invariant) vector fields on a semidirect product R

2
�A R

for any matrix

(2.4) A =
�

a b
c d

�
.

We first choose coordinates (x, y) ∈ R
2, z ∈ R. Then ∂x = ∂

∂x
, ∂y, ∂z is a

parallelization of G = R
2

�A R. Taking derivatives at t = 0 in the expression (2.2)
of the left multiplication by (p1, z1) = (t, 0, 0) ∈ G (resp. by (0, t, 0), (0, 0, t)), we
obtain the following basis {F1, F2, F3} of the right invariant vector fields on G:

(2.5) F1 = ∂x, F2 = ∂y, F3(x, y, z) = (ax + by)∂x + (cx + dy)∂y + ∂z.

Analogously, if we take derivatives at t = 0 in the right multiplication by
(p2, z2) = (t, 0, 0) ∈ G (resp. by (0, t, 0), (0, 0, t)), we obtain the following basis
{E1, E2, E3} of the Lie algebra g of G:
(2.6)
E1(x, y, z) = a11(z)∂x + a21(z)∂y, E2(x, y, z) = a12(z)∂x + a22(z)∂y, E3 = ∂z,

where we have denoted

(2.7) ezA =
�

a11(z) a12(z)
a21(z) a22(z)

�
.

Regarding the Lie bracket, [E1, E2] = 0 since R
2 is abelian. Thus, Span{E1, E2}

is a commutative two-dimensional Lie subalgebra of g. Furthermore, E1(y) =
dy(E1) = y(E1) = a21(z) and similarly,

E1(x) = a11(z), E1(y) = a21(z), E1(z) = 0,
E2(x) = a12(z), E2(y) = a22(z), E2(z) = 0,
E3(x) = 0, E3(y) = 0, E3(z) = 1,

from where we directly get

(2.8) [E3, E1] = a�11(z)∂x + a�21(z)∂y.

Now, equation (2.6) implies that ∂x = a11(z)E1 + a21(z)E2, ∂y = a12(z)E1 +
a22(z)E2, where aij(z) = aij(−z) are the entries of e−zA. Plugging these expres-
sions in (2.8), we obtain

(2.9) [E3, E1] = aE1 + cE2,

and analogously

(2.10) [E3, E2] = bE1 + dE2.

Note that equations (2.9) and (2.10) imply that the linear map adE3 : Span{E1, E2}→
Span{E1, E2} given by adE3(Y ) = [E3, Y ] has matrix A with respect to the basis
{E1, E2}.

Span{E1, E2} is an integrable two-dimensional distribution whose leaf passing
through the identity element is the normal subgroup R

2
�A {0} = ker(Π), where

Π is the group morphism Π(x, y, z) = z. Clearly, the integral surfaces of this
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distribution define the foliation F = {R2
�A {z} | z ∈ R} of R

2
�A R. Since the Lie

bracket restricted to the Lie algebra of ker(Π) vanishes, then every left invariant
metric on R

2 ×A R restricts to ker(Π) as a flat metric. This implies that each of
the leaves of F is intrinsically flat, regardless of the left invariant metric that we
consider on R

2
�A R. Nevertheless, we will see below than the leaves of F may be

extrinsically curved.

2.3. Canonical left invariant metric on a semidirect product. Given
a matrix A ∈ M2(R), we define the canonical left invariant metric on R

2
�A R

to be that one for which the left invariant basis {E1, E2, E3} given by (2.6) is
orthonormal.

Equations (2.9) and (2.10) together with the classical Koszul formula give the
Levi-Civita connection ∇ for the canonical left invariant metric of G = R

2
�A R:

(2.11)

∇E1E1 = a E3 ∇E1E2 = b+c

2 E3 ∇E1E3 = −a E1 − b+c

2 E2

∇E2E1 = b+c

2 E3 ∇E2E2 = d E3 ∇E2E3 = − b+c

2 E1 − d E2

∇E3E1 = c−b

2 E2 ∇E3E2 = b−c

2 E1 ∇E3E3 = 0.

In particular, z �→ (x0, y0, z) is a geodesic in G for every (x0, y0) ∈ R
2. We next

emphasize some other metric properties of the canonical left invariant metric �, �
on G:

• The mean curvature of each leaf of the foliation F = {R2
�A {z} | z ∈

R} with respect to the unit normal vector field E3 is the constant H =
trace(A)/2. In particular, if we scale A by λ > 0 to obtain λA, then H
changes into λH (the same effect as if we were to scale the ambient metric
by 1/λ).

• The change from the orthonormal basis {E1, E2, E3} to the basis {∂x, ∂y, ∂z}
given by (2.6) produces the following expression for the metric �, �:

(2.12)
�, � =

�
a11(−z)2 + a21(−z)2

�
dx2 +

�
a12(−z)2 + a22(−z)2

�
dy2 + dz2

+ [a11(−z)a12(−z) + a21(−z)a22(−z)] (dx⊗ dy + dy ⊗ dx)

= e−2trace(A)z
��

a21(z)2 + a22(z)2
�
dx2 +

�
a11(z)2 + a12(z)2

�
dy2

�
+ dz2

− e−2trace(A)z [a11(z)a21(z) + a12(z)a22(z)] (dx⊗ dy + dy ⊗ dx) .

In particular, given (x0, y0) ∈ R
2, the map (x, y, z) φ�→ (−x + 2x0,−y +

2y0, z) is an isometry of (R2
�A R, �, �) into itself. Note that φ is the

rotation by angle π around the line l = {(x0, y0, z) | z ∈ R}, and the fixed
point set of φ is the geodesic l.

Remark 2.10. As we just observed, the vertical lines in the R
2×R coordinates

of R
2

�A R are geodesics of its canonical metric, which are the axes or fixed point
sets of the isometries corresponding to rotations by angle π around them. For any
line L in R

2
�A {0} let PL denote the vertical plane {(x, y, z) | (x, y, 0) ∈ L, z ∈ R}

containing the set of vertical lines passing though L. It follows that the plane PL is
ruled by vertical geodesics and furthermore, since rotation by π around any vertical
line in PL is an isometry that leaves PL invariant, then PL has zero mean curvature.
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Thus, every metric Lie group which can be expressed as a semidirect product of
the form R

2
�A R with its canonical metric has many minimal foliations by parallel

vertical planes, where by parallel we mean that the related lines in R
2

�A {0} for
these planes are parallel in the intrinsic metric.

A natural question to ask is: Under which conditions are R
2
�A R and R

2
�B R

isomorphic (and if so, when are their canonical metrics isometric), in terms of the
defining matrices A, B ∈M2(R)? Regarding these questions, we make the following
comments.

(1) Assume A, B are similar, i.e., there exists P ∈ Gl(2, R) such that B =
P−1AP . Then, ezB = P−1ezAP from where it follows easily that the
map ψ : R

2
�A R → R

2
�B R given by ψ(p, t) = (P−1p, t) is a Lie group

isomorphism.
(2) Now consider the canonical left invariant metrics on R

2
�A R, R

2
�B R. If

we assume that A, B are congruent (i.e., B = P−1AP for some orthogonal
matrix P ∈ O(2)), then the map ψ defined in (1) above is not an isometry
between the canonical metrics on R

2
�A R and R

2
�B R; nevertheless, the

coefficients of dx2, dy2, dx⊗dy+dy⊗dx in (2.12) coincide for A and B, and
so, the canonical metrics on R

2
�A R and on R

2
�B R coincide (in other

words, the identity map 1R3 is an isometry between the corresponding
canonical metrics, although 1R3 is not a group homomorphism).

(3) What is the effect of scaling the matrix A on R
2

�A R? If λ > 0, then
obviously

(2.13) ez(λA) = e(λz)A.

Hence the mapping ψλ(x, y, z) = (x, y, z/λ) is a Lie group isomorphism
from R

2
�A R into R

2
�λA R. Equation (2.13) also gives that the entries

aλ

i,j
(z) of the matrix ez(λA) in equation (2.7) satisfy

aλ

i,j
(z) = aij(λz),

which implies that the left invariant vector fields Eλ

1 , Eλ

2 , Eλ

3 given by
applying (2.6) to the matrix λA satisfy

Eλ

i
(x, y, z) = Ei(x, y,λz), i = 1, 2, 3.

The last equality leads to (ψλ)∗(Ei) = Eλ

i
for i = 1, 2 while (ψλ)∗(E3) =

1
λ
Eλ

3 . That is, ψλ is not an isometry between the canonical metrics �, �A
on R

2
�A R and �, �λA on R

2
�λA R, although it preserves the metric

restricted to the distribution spanned by E1, E2. Nevertheless, the dif-
feomorphism (p, z) ∈ R

2
�A R

φλ→
�

1
λ
p, 1

λ
z
�
∈ R

2
�λA R can be proven

to satisfy φ∗
λ
(�, �λA) = 1

λ2 �, �A (φλ is not a group homomorphism). Thus,
�, �A and �, �λA are homothetic metrics. We will prove in Sections 2.5
and 2.6 that R

2
�A R and R

2
�λA R are isomorphic groups.

2.4. Unimodular and non-unimodular Lie groups. A Lie group G is
called unimodular if its left invariant Haar measure is also right invariant. This
notion based on measure theory can be simply expressed in terms of the adjoint
representation as follows.

Each element g ∈ G defines an inner automorphism ag ∈ Aut(G) by the formula
ag(h) = ghg−1. Since the group homomorphism g ∈ G �→ ag ∈ Aut(G) satisfies
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ag(e) = e (here e denotes the identity element in G), then its differential d(ag)e at
e is an automorphism of the Lie algebra g of G. This defines the so-called adjoint

representation,

Ad: G → Aut(g), Ad(g) = Adg := d(ag)e.

Since agh = ag ◦ ah, the chain rule insures that Ad(gh) = Ad(g) ◦Ad(h), i.e., Ad is
a homomorphism between Lie groups. Therefore, its differential is a linear mapping
ad := d(Ad) which makes the following diagram commutative:

g ✲
ad

End(g)

❄

exp

❄

exp

G ✲Ad Aut(g)
It is well-known that for any X ∈ g, the endomorphism adX = ad(X) : g → g is
given by adX(Y ) = [X,Y ] (see e.g., Proposition 3.47 in [59]).

It can be proved (see e.g., Lemma 6.1 in [49]) that G is unimodular if and only
if det(Adg) = 1 for all g ∈ G. After taking derivatives, this is equivalent to:

(2.14) For all X ∈ g, trace(adX) = 0.

The kernel u of the linear mapping X ∈ g
ϕ�→ trace(adX) ∈ R is called the unimod-

ular kernel of G. If we take the trace in the Jacobi identity

ad[X,Y ] = adX ◦ adY − adY ◦ adX for all X,Y ∈ g,

then we deduce that

(2.15) [X,Y ] ∈ ker(ϕ) = u for all X,Y ∈ g.

In particular, ϕ is a homomorphism of Lie algebras from g into the commutative
Lie algebra R, and u is an ideal of g. A subalgebra h of g is called unimodular if
trace(adX) = 0 for all X ∈ h. Hence u is itself a unimodular Lie algebra.

2.5. Classification of three-dimensional non-unimodular metric Lie
groups. Assume that G is a three-dimensional, non-unimodular Lie group and let
�, � be a left invariant metric on G. Since u is a two-dimensional subalgebra of g,
we can find an orthonormal basis E1, E2, E3 of g such that u = Span{E1, E2} and
there exists a related subgroup H of G whose Lie algebra is u. Using (2.15) we have
that [E1, E3], [E2, E3] are orthogonal to E3, hence 0 = trace(adE1) = �[E1, E2], E2�
and 0 = trace(adE2) = �[E2, E1], E1�, from where [E1, E2] = 0, i.e., H is isomorphic
to R

2. Furthermore, there exist α,β, γ, δ ∈ R such that

(2.16) [E3, E1] = αE1 + γE2,
[E3, E2] = βE1 + δE2,

with trace(adE3) = α + δ �= 0 since E3 /∈ u.
Note that the matrix

(2.17) A =
�

α β
γ δ

�
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determines the Lie bracket on g and thus, it also determines completely the Lie
group G, in the sense that two simply-connected, non-unimodular metric Lie groups
with the same matrix A as in (2.17) are isomorphic. In fact:

If we keep the group structure and change the left invariant met-

ric �, � by a homothety of ratio λ > 0, then the related matrix A
in (2.17) associated to λ�, � changes into (1/

√
λ)A.

Furthermore, comparing (2.16) with (2.9), (2.10) we deduce:

Lemma 2.11. Every simply-connected, three-dimensional, non-unimodular met-

ric Lie group is isomorphic and isometric to a semidirect product R
2

�A R with

its canonical metric, where the normal subgroup R
2

�A {0} of R
2

�A R is the

abelian two-dimensional subgroup exp(u) associated to the unimodular kernel u,
{0}�A R = exp(u⊥) and A is given by (2.16), (2.17) with trace(A) �= 0.

We now consider two different possibilities.

Case 1. Suppose A = αI2. Then the Lie bracket satisfies equation (2.1) for
the non-zero linear map l : g → R given by l(E1) = l(E2) = 0, l(E3) = α and thus,
(G, �, �) has constant sectional curvature −α2 < 0. Recall that α = 1 gives the
hyperbolic three-space H

3 with its usual Lie group structure. Since scaling A does
not change the group structure but only scales the left invariant canonical metric,
then H

3 is the unique Lie group in this case.

Case 2. Suppose A is not a multiple of I2. In this case, the trace and
the determinant

T = trace(A) = α + δ,
D = det(A) = αδ − βγ

of A are enough to determine g (resp. G) up to a Lie algebra (resp. Lie group)
isomorphism. To see this fact, consider the linear transformation L(X) = [E3, X],
X ∈ u. Since A is not proportional to I2, there exists �E1 ∈ u such that �E1 and
�E2 := L( �E1) are linearly independent. Then the matrix of L with respect to the
basis { �E1, �E2} of u is �

0 −D
1 T

�
.

Since scaling the matrix A by a positive number corresponds to changing the
left invariant metric by a homothety and scaling it by −1 changes the orientation,
we have that in this case of A not being a multiple of the identity, the following
property holds.

If we are allowed to identify left invariant metrics under rescal-

ing, then we can assume T = 2 and then D gives a complete

invariant of the group structure of G, which we will call the D-

invariant of G.

In this Case 2, we can describe the family of non-unimodular metric Lie groups
as follows. Fix a group structure and a left invariant metric �, �. Rescale the
metric so that trace(A) = 2. Pick an orthonormal basis E1, E2, E3 of g so that the
unimodular kernel is u = Span{E1, E2}, [E1, E2] = 0 and the Lie bracket is given
by (2.16) with α + δ = 2. After a suitable rotation in u (this does not change the
metric), we can also assume that αβ + γδ = 0. After possibly changing E1, E2 by
E2,−E1 we can assume α ≥ δ and then possibly replacing E1 by −E1, we can also
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assume γ ≥ β. It then follows from Lemma 6.5 in [49] that the orthonormal basis
{E1, E2, E3} diagonalizes the Ricci tensor associated to �, �, with principal Ricci
curvatures being

(2.18)
Ric(E1) = −α(α + δ) + 1

2 (β2 − γ2),

Ric(E2) = −δ(α + δ) + 1
2 (γ2 − β2),

Ric(E3) = −α2 − δ2 − 1
2 (β + δ)2.

The equation αβ + γδ = 0 allows us to rewrite A as follows:

(2.19) A =
�

1 + a −(1− a)b
(1 + a)b 1− a

�
,

where a = α− 1 and b =






γ

α
= β

α−2 if α �= 0, 2
−β/2 if α = 0
γ/2 if α = 2




. Our assumptions α ≥ δ and

γ ≥ β imply that a, b ≥ 0, which means that the related matrix A for adE3 : u → u
given in (2.19) with respect to the basis {E1, E2} is now uniquely determined.
The D-invariant of the Lie group in this language is given by

(2.20) D = (1− a2)(1 + b2).

Given D ∈ R we define

(2.21) m(D) =
� √

D − 1 if D > 1,
0 otherwise.

Thus we can solve in (2.20) for a = a(b) in the range b ∈ [m(D),∞) obtaining

(2.22) a(b) =
�

1− D

1 + b2
.

Note that we can discard the case (D, b) = (1, 0) since (2.22) leads to the matrix
A = I2 which we have already treated. So from now on we assume (D, b) �= (1, 0).
For each b ∈ [m(D),∞), the corresponding matrix A = A(D, b) given by (2.19) for
a = a(b) defines (up to isomorphism) the same group structure on the semidirect
product R

2
�A(D,b)R, and it is natural to ask if the corresponding canonical metrics

on R
2
�A(D,b) R for a fixed value of D are non-isometric. The answer is affirmative:

the Ricci tensor in (2.18) can be rewritten as

(2.23)
Ric(E1) = −2

�
1 + a(1 + b2)

�

Ric(E2) = −2
�
1− a(1 + b2)

�

Ric(E3) = −2
�
1 + a2(1 + b2)

�
.

Plugging (2.22) in the last formula we have

Ric(E1) = −2
�
1 +

�
x(x−D)

�

Ric(E2) = −2
�
1−

�
x(x−D)

�

Ric(E3) = −2(1 + x−D),

where x = x(b) = 1 + b2. It is not difficult to check that the map that assigns to
each b ∈ [m(D),∞) the unordered triple {Ric(E1),Ric(E2),Ric(E3)} is injective,
which implies that for D fixed, different values of b give rise to non-isometric left
invariant metrics on the same group structure R

2
�A(D,b) R. This family of metrics,

together with the rescaling process to get trace(A) = 2, describe the 2-parameter
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family of left invariant metrics on a given non-unimodular group in this Case 2.
We summarize these properties in the following statement.

Lemma 2.12. Let A ∈ M2(R) be a matrix as in (2.19) with a, b ≥ 0 and let

D = det(A). Then:

(1) If A = I2, then G = R
2

�A R is isomorphic to H
3

and there is only one

left invariant metric on G (up to scaling), the standard one with constant

sectional curvature −1. Furthermore, this choice of A is the only one

which gives rise to the group structure of H
3
.

(2) If A �= I2, then the family of left invariant metrics on G = R
2

�A R

is parameterized (up to scaling the metric) by the values b ∈ [m(D),∞),
by means of the canonical metric on R

2
�A1 R, where A1 = A1(D, b)

given by (2.19) and (2.22). Furthermore, the group structure of G is

determined by its D-invariant, i.e., different matrices A �= I2 with the

same (normalized) D-invariant produce isomorphic Lie groups.

Recall from Section 2.3 that each of the integral leaves R
2

�A {z} of the distri-
bution spanned by E1, E2 has unit normal vector field ±E3, and the Gauss equation
together with (2.19) imply that the mean curvature of these leaves (with respect to
E3) is 1

2 trace(A) = 1.
We finish this section with a result by Milnor [49] that asserts that if we want

to solve a purely geometric problem in a metric Lie group (G, �, �) (for instance,
classifying the H-spheres in G for any value of the mean curvature H ≥ 0), then
one could have different underlying group structures to attack the problem.

Lemma 2.13. A necessary and sufficient condition for a non-unimodular three-

dimensional Lie group G to admit a left invariant metric with constant negative

curvature is that G = H
3

or its D-invariant is D > 1. In particular, there exist

non-isomorphic metric Lie groups which are isometric.

Proof. First assume G admits a left invariant metric with constant negative
curvature. If G is in Case 1, i.e., its associated matrix A in (2.17) is a multiple of
I2, then item (1) of Lemma 2.12 gives that G is isomorphic to H

3. If G is in Case 2,
then (2.23) implies that a = 0 and (2.20) gives D ≥ 1. But D = 1 would give b = 0
which leads to the Case 1 for G.

Reciprocally, we can obviously assume that G is not isomorphic to H
3 and

D > 1. In particular, G is in Case 2. Pick a left invariant metric �, � on G so
that trace(A) = 2 and use Lemma 2.12 to write the metric Lie group (G, �, �) as
R

2
�A R with A = A(D, b) as in (2.19) and (2.22). Now, taking b =

√
D − 1 gives

a(b) = 0 in (2.22). Hence (2.23) gives Ric = −2 and the sectional curvature of the
corresponding metric on G is −1. �

2.6. Classification of three-dimensional unimodular Lie groups. Once
we have picked an orientation and a left invariant metric �, � on a three-dimensional
Lie group G, the cross product operation makes sense in its Lie algebra g: given
X,Y ∈ g, X × Y is the unique element in g such that

�X × Y, Z� = det(X,Y, Z) for all X,Y, Z ∈ g,

where det denotes the oriented volume element on (G, �, �). Thus, �X × Y �2 =
�X�2�Y �2 − �X,Y �2 and if X,Y ∈ g are linearly independent, then the triple
{X,Y,X × Y } is a positively oriented basis of g. The Lie bracket and the cross
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product are skew-symmetric bilinear forms, hence related by a unique endomor-
phism L : g → g by

[X,Y ] = L(X × Y ), X, Y ∈ g.

It is straightforward to check that G is unimodular if and only if L is self-adjoint
(see Lemma 4.1 in [49]).

Assume from now on that G is unimodular. Then there exists a positively
oriented orthonormal basis {E1, E2, E3} of g consisting of eigenvectors of L, i.e.,

(2.24) [E2, E3] = c1E1, [E3, E1] = c2E2, [E1, E2] = c3E3,

for certain constants c1, c2, c3 ∈ R usually called the structure constants of the
unimodular metric Lie group. Note that a change of orientation forces × to change
sign, and so it also produces a change of sign to all of the ci. The structure constants
depend on the chosen left invariant metric, but only their signs determine the
underlying unimodular Lie algebra as follows from the following fact. If we change
the left invariant metric by changing the lengths of E1, E2, E3 (but we keep them
orthogonal), say we declare bcE1, acE2, abE3 to be orthonormal for a choice of non-
zero real numbers a, b, c (note that the new basis is always positively oriented), then
the new structure constants are a2c1, b2c2, c2c3. This implies that a change of left
invariant metric does not affect the signs of the structure constants c1, c2, c3 but
only their lengths, and that we can multiply c1, c2, c3 by arbitrary positive numbers
without changing the underlying Lie algebra.

Now we are left with exactly six cases, once we have possibly changed the
orientation so that the number of negative structure constants is at most one. Each
of these six cases is realized by exactly one simply-connected unimodular Lie group,
listed in the following table. These simply-connected Lie groups will be studied in
some detail later.

Signs of c1, c2, c3 simply-connected Lie group

+, +, + SU(2)

+, +, – �SL(2, R)
+, +, 0 �E(2)
+, –, 0 Sol3
+, 0, 0 Nil3
0, 0, 0 R

3

Table 1: Three-dimensional, simply-connected unimodular Lie groups.
The six possibilities in Table 1 correspond to non-isomorphic unimodular Lie

groups, since their Lie algebras are also non-isomorphic: an invariant which distin-
guishes them is the signature of the (symmetric) Killing form

X,Y ∈ g �→ β(X,Y ) = trace (adX ◦ adY ) .

Before describing each of the cases listed in Table 1, we will study some cur-
vature properties for unimodular metric Lie groups, which can be expressed in a
unified way. To do this, it is convenient to introduce new constants µ1, µ2, µ3 ∈ R

by

(2.25) µ1 =
1
2
(−c1 + c2 + c3), µ2 =

1
2
(c1 − c2 + c3), µ3 =

1
2
(c1 + c2 − c3).
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The Levi-Civita connection ∇ for the metric associated to these constants µi is
given by

(2.26)

∇E1E1 = 0 ∇E1E2 = µ1E3 ∇E1E3 = −µ1E2

∇E2E1 = −µ2E3 ∇E2E2 = 0 ∇E2E3 = µ2E1

∇E3E1 = µ3E2 ∇E3E2 = −µ3E1 ∇E3E3 = 0.

The symmetric Ricci tensor associated to the metric diagonalizes in the basis
{E1, E2, E3}, with eigenvalues

(2.27) Ric(E1) = 2µ2µ3, Ric(E2) = 2µ1µ3, Ric(E3) = 2µ1µ2.

At this point, it is natural to consider several different cases.

(1) If c1 = c2 = c3 (hence µ1 = µ2 = µ3), then (G, �, �) has constant sectional
curvature µ2

1 ≥ 0. This leads to R
3 and S

3 with their standard metrics
(the hyperbolic three-space H

3 is non-unimodular as a Lie group).
(2) If c3 = 0 and c1 = c2 > 0 (hence µ1 = µ2 = 0, µ3 = c1 > 0), then (G, �, �)

is flat. This leads to �E(2) with its standard metric.
(3) If exactly two of the structure constants ci are equal and no ci is zero, after

possibly reindexing we can assume c1 = c2. Then rotations about the axis
with direction E3 are isometries of the metric, and we find a standard
E(κ, τ)-space, i.e., a simply-connected homogeneous space that submerses
over the complete simply-connected surface M

2(κ) of constant curvature
κ, with bundle curvature τ and four dimensional isometry group. If we
identify E3 with the unit Killing field that generates the kernel of the
differential of the Riemannian submersion Π : E(κ, τ) → M

2(κ), then it
is well-known that the symmetric Ricci tensor has eigenvalues κ − 2τ2

(double, in the plane �E3�⊥) and 2τ2. Hence µ2
1 = τ2 recovers the bundle

curvature, and the base curvature κ is c1c3, which can be positive, zero or
negative. There are two types of E(κ, τ)-spaces in this setting, both with
τ �= 0: Berger spheres, which occur when both c1 = c2 and c3 are positive
(hence we have a 2-parameter family of metrics, which can be reduced to
just one parameter after rescaling) and the universal cover �SL(2, R) of the
special linear group, which occurs when c1 = c2 > 0 and c3 < 0 (hence
with a 1-parameter family of metrics after rescaling).

(4) If c1 = c2 = 0 and c3 > 0, then similar arguments lead to the Heisenberg
group Nil3, (the left invariant metric on Nil3 = E(κ = 0, τ) is unique
modulo homotheties). The other two E(κ, τ)-spaces not appearing in this
setting or in the previous setting of item (3) are S

2 × R, which is not a
Lie group, and H

2 × R, which is a non-unimodular Lie group.
(5) If all three structure constants c1, c2, c3 are different, then the isometry

group of (G, �, �) is three-dimensional. In this case, we find the special
unitary group SU(2) (when all the ci are positive), the universal cover
�SL(2, R) of the special linear group (when two of the constants ci are
positive and one is negative), the universal cover �E(2) of the group of
rigid motions of the Euclidean plane (when two of the constants ci are
positive and the third one vanishes) and the solvable group Sol3 (when
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one of the ci is positive, other is negative and the third one is zero), see
Figure 3 for a pictorial representation of these cases (1)–(4).

The following result summarizes how to express the metric semidirect products
with isometry groups of dimension four or six.

Theorem 2.14 (Classification of metric semidirect products with 4 or 6 dimen-
sional isometry groups).
Let (G, �, �) be a metric Lie group which is isomorphic and isometric to a non-trivial

semidirect product R
2

�A R with its canonical metric for some A ∈M2(R).
(1) Suppose that the canonical metric on R

2
�A R has isometry group of di-

mension six.

(a) If G is non-unimodular, then up to rescaling the metric, A is similar

to �
1 −b
b 1

�
for some b ∈ [0,∞).

These groups are precisely those non-unimodular groups that are ei-

ther isomorphic to H
3

or have D-invariant D = det(A) > 1 and the

canonical metric on R
2

�A R has constant sectional curvature −1.
Furthermore (G, �, �) is isometric to the hyperbolic three-space, and

under the left action of G on itself, G is isomorphic to a subgroup of

the isometry group of the hyperbolic three-space.

(b) If G is unimodular, then either A = 0 and (G, �, �) is R
3

with its flat

metric, or, up to rescaling the metric, A is similar to
�

0 −1
1 0

�
.

Here the underlying group is �E(2) and the canonical metric given by

A on R
2

�A R = �E(2) is flat.

(2) Suppose that the canonical metric on R
2

�A R has isometry group of di-

mension four.

(a) If G is non-unimodular, then up to rescaling the metric, A is similar

to �
2 0
2b 0

�
for some b ∈ R.

Furthermore, when A has this expression, then the underlying group

structure is that of H
2×R, and R

2
�A R with its canonical metric is

isometric to the E(κ, τ)-space with b = τ and κ = −4.
(b) If G is unimodular, then up to scaling the metric, A is similar to

�
0 1
0 0

�

and the group is Nil3.

Proof. We will start by analyzing the non-unimodular case. Sup-
pose that A is a non-zero multiple of the identity. As we saw in Case 1 just after
Lemma 2.11, the Lie bracket satisfies equation (2.1) and thus, R

2
�A R has constant

negative sectional curvature. In particular, its isometry group has dimension six
and we are in case (1-a) of the theorem with b = 0.

Now assume that A is not a multiple of the identity. By the discussion in Case 2
just after Lemma 2.11, after rescaling the metric so that trace(A) = 2, in a new
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orthonormal basis E1, E2, E3 of the Lie algebra g of R
2

�A R, we can write A as
in equation (2.19) in terms of constants a, b ≥ 0 with either a > 0 or b > 0 and
such that the Ricci tensor acting on these vector fields is given by (2.23). We now
discuss two possibilities.

(1) If the dimension of the isometry group of R
2

�A R is six, then Ric(E1) =
Ric(E2) = Ric(E3) from where one deduces that a = 0. Plugging this equality in
(2.19) we obtain the matrix in item (1-a) of the theorem. The remaining properties
stated in item (1-a) are easy to check.

(2) If the isometry group of R
2

�A R has dimension four, then two of the numbers
Ric(E1), Ric(E2), Ric(E3) are equal and the third one is different from the other
one (this follows since the Ricci tensor diagonalizes in the basis E1, E2, E3). Now
(2.23) implies that a > 0, hence Ric(E2) is different from both Ric(E1), Ric(E3)
and so, Ric(E1) = Ric(E3). Then (2.23) implies that a = 1 and (2.19) gives that

A =
�

2 0
2b 0

�
.

Since trace(A) = 2 and the D-invariant for X = R
2
�A R is zero, then R

2
�A R

is isomorphic to H
2 × R. Note that

ezA =
�

e2z 0
b(e2z − 1) 1

�
,

from where (2.5) and (2.6) imply that E2 = ∂y = F2. In particular, E2 is a Killing
vector field. Let H = exp(Span(E2)) be the 1-parameter subgroup of R

2
�A R

generated by E2. Since E2 is Killing, then the canonical metric �, �A on R
2

�A R

descends to the quotient space M = (R2
�AR)/H, making it a homogeneous surface.

Since every integral curve of E2 = ∂y intersects the plane {(x, 0, z) | x, z ∈ R} in
a single point, the quotient surface M is diffeomorphic to R

2. Therefore, up to
homothetic scaling, M is isometric to R

2 or H
2 with their standard metrics and

R
2

�A R → M is a Riemannian submersion. This implies that (R2
�A R, �, �A) is

isometric to an E(κ, τ)-space with k ≤ 0. Since the eigenvalues of the Ricci tensor
for this last space are κ − 2τ2 (double) and 2τ2, then b = τ and κ = −4. Now
item (2-a) of the theorem is proved.

Now assume that G is unimodular. We want to use equations (2.9) and (2.10)
together with (2.24), although note that they are expressed in two basis which
a priori might not be the same. This little problem can be solved as follows.
Consider the orthonormal left invariant basis {E1, E2, E3} for the canonical metric
on R

2
�A R given by (2.6). For the orientation on G defined by declaring this

basis to be positive, let L : g → g be the self-adjoint endomorphism of the Lie
algebra g given by [X,Y ] = L(X ×Y ), X,Y ∈ g, where X ×Y is the cross product
associated to the canonical metric on R

2
�A R and to the chosen orientation. Since

[E1, E2] = 0, then E3 is an eigenvector of L with associated eigenvalue zero. As L
is self-adjoint, then L leaves invariant Span(E3)⊥ = Span{E1, E2}, and thus, there
exists a positive orthonormal basis {E�1, E�2} of Span{E1, E2} (with the induced
orientation and inner product) which diagonalizes L. Obviously, the matrix of
change of basis between {E1, E2} and {E�1, E�2} is orthogonal, hence item (2) at
the end of Section 2.3 shows that the corresponding metric semidirect products
associated to A and to the diagonal form of L are isomorphic and isometric. This
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property is equivalent to the desired property that the basis used in equations (2.9),
(2.10) and (2.24) can be chosen to be the same.

Now using the notation in equations (2.9), (2.10) and (2.24), we have 0 =
[E1, E2] = c3E3 hence c3 = 0, c2E2 = [E3, E1] = aE1 +cE2 hence a = 0 and c = c2,
−c1E1 = [E3, E2] = bE1 + dE2, hence d = 0 and b = −c1. On the other hand,
using (2.25) we have −µ1 = µ2 = 1

2 (c1 − c2), µ3 = 1
2 (c1 + c2) from where (2.27)

reads as

(2.28) Ric(E1) =
1
2
(c2

1 − c2
2) = −Ric(E2), Ric(E3) = −1

2
(c1 − c2)2.

As before, we discuss two possibilities.

(1) If the dimension of the isometry group of R
2

�A R is six, then Ric(E1) =
Ric(E2) = Ric(E3) from where (2.28) gives c1 = c2. If c1 = 0, then A = 0. If
c1 �= 0, then up to scaling the metric we can assume c1 = 1 and we arrive to
item (1-b) of the theorem.

(2) If the isometry group of R
2

�A R has dimension four, then two of the numbers
Ric(E1), Ric(E2), Ric(E3) are equal and the third one is different from the other one
(again because the Ricci tensor diagonalizes in the basis E1, E2, E3). If Ric(E1) =
Ric(E2), then c2

1 = c2
2 and Ric(E1) = Ric(E2) = 0. Since Ric(E3) cannot be

zero, then it is strictly negative. This is impossible, since the Ricci eigenvalues
in a standard E(κ, τ)-space are κ − 2τ2 (double, which in this case vanishes), and
2τ2 ≥ 0. Thus we are left with only two possible cases: either Ric(E1) = Ric(E3)
(hence (2.28) gives c1 = 0) or Ric(E2) = Ric(E3) (and then c2 = 0). These two
cases lead, after rescaling and a possible change of orientation, to the matrices

A1 =
�

0 0
1 0

�
, A2 =

�
0 −1
0 0

�
,

which are congruent. Hence we have arrived to the description in item (2-b) of the
theorem. This finishes the proof. �

2.7. The unimodular groups in Table 1 and their left invariant met-
rics. Next we will study in more detail the unimodular groups listed in Table 1
in the last section, focusing on their metric properties when the corresponding
isometry group has dimension three.

The special unitary group. This is the group

SU(2) = {A ∈M2(C) | A−1 = At, detA = 1}

=
��

z w
−w z

�
∈M2(C) | |z|2 + |w|2 = 1

�
,

with the group operation of matrix multiplication. SU(2) is isomorphic to the group
of quaternions a + b i + c j + dk (here a, b, c, d ∈ R) of absolute value 1, by means
of the group isomorphism

�
a− di −b + ci
b + ci a + di

�
∈ SU(2) �→ a + b i + c j + dk,

and thus, SU(2) is diffeomorphic to the three-sphere. SU(2) covers the special
orthogonal group SO(3) with covering group Z2, see Example 2.9. SU(2) is the
unique simply-connected three-dimensional Lie group which is not diffeomorphic to
R

3. The only normal subgroup of SU(2) is its center Z2 = {±I2}.
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The family of left invariant metrics on SU(2) has three parameters, which can
be realized by changing the lengths of the left invariant vector fields E1, E2, E3

in (2.24) but keeping them orthogonal. For instance, assigning the same length
to all of them produces the 1-parameter family of standard metrics with isometry
group of dimension six; assigning the same length to two of them (say E1, E2)
different from the length of E3 produces the 2-parameter family of Berger metrics
with isometry group of dimension four; finally, assigning different lengths to the
three orthogonal vector fields produces the more general 3-parameter family of
metrics with isometry group of dimension three.

The universal covering of the special linear group, �SL(2, R). The projective

special linear group is
PSL(2, R) = SL(2, R)/{±I2},

where SL(2, R) = {A ∈M2(R) | detA = 1} is the special linear group (with the op-
eration given by matrix multiplication). Obviously, both groups Sl(2, R),PSL(2, R)
have the same universal cover, which we denote by �SL(2, R) (the notation �PSL(2, R)
is also commonly used in literature). The Lie algebra of any of the groups SL(2, R),
PSL(2, R), �SL(2, R) is

g = sl(2, R) = {B ∈M2(R) | trace(B) = 0}.
PSL(2, R) is a simple group, i.e., it does not contain normal subgroups except itself
and the trivial one. Since the universal cover �G of a connected Lie group G with
π1(G) �= 0 contains an abelian normal subgroup isomorphic to π1(G), then �SL(2, R)
is not simple. In fact, the center of �SL(2, R) is isomorphic to π1(PSL(2, R)) = Z.

It is sometimes useful to have geometric interpretations of these groups. In the
case of SL(2, R), we can view it either as the group of orientation-preserving linear
transformations of R

2 that preserve the (oriented) area, or as the group of complex
matrices

SU1(2) =
��

z w
w z

�
∈M2(C) | |z|2 − |w|2 = 1

�
,

with the multiplication as its operation. This last model of SL(2, R) is useful since it
mimics the identification of SU(2) with the unitary quaternions (simply change the
standard Euclidean metric dx2

1 +dx2
2 +dx2

3 +dx2
4 on C

2 ≡ R
4 by the non-degenerate

metric dx2
1 + dx2

2 − dx2
3 − dx2

4). The map
�

a b
c d

�
∈ Sl(2, R) �→ 1

2

�
a + d + i(b− c) b + c + i(a− d)
b + c− i(a− d) a + d− i(b− c)

�
∈ SU1(2)

is an isomorphism of groups, and the Lie algebra of SU1(2) is

su1(2) =
��

iλ a
a −iλ

�
| λ ∈ R, a ∈ C

�
.

Regarding the projective special linear group PSL(2, R), we highlight four useful
models isomorphic to it:

(1) The group of orientation-preserving isometries of the hyperbolic plane.
Using the upper half-plane model for H

2, these are transformations of the
type

z ∈ H
2 ≡ (R2)+ �→ az + b

cz + d
∈ (R2)+ (a, b, c, d ∈ R, ad− bc = 1).
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(2) The group of conformal automorphisms of the unit disc, i.e., Möbius trans-
formations of the type φ(z) = eiθ z+a

az+1 , for θ ∈ R and a ∈ C, |a| < 1.
(3) The unit tangent bundle of the hyperbolic plane. This representation

occurs because an isometry of H
2 is uniquely determined by the image

of a base point and the image under its differential of a given unitary
vector tangent at that point. This point of view of PSL(2, R) as an S

1-
bundle over H

2 (and hence of �SL(2, R) as an R-bundle over H
2) defines

naturally the one-parameter family of left invariant metrics on �SL(2, R)
with isometry group of dimension four, in a similar manner as the Berger
metrics in the three-sphere starting from metrics gλ, λ > 0, on the unit
tangent bundle of S

2, see Example 2.9.
The characteristic polynomial of a matrix A ∈ SL(2, R) is λ2 − T λ + 1 = 0,

where T =trace(A). Its roots are given by λ = 1
2

�
T ±

√
T 2 − 4

�
. The sign of the

discriminant T 2−4 allows us to classify the elements A ∈ SL(2, R) in three different
types:

(1) Elliptic. In this case |T | < 2, A has no real eigenvalues (its eigenvalues
are complex conjugate and lie on the unit circle). Thus, A is of the form
P−1RotθP for some P ∈ Gl(2, R), where Rotθ denotes the rotation of
some angle θ ∈ [0, 2π).

(2) Parabolic. Now |T | = 2 and A has a unique (double) eigenvalue λ =
T

2 = ±1. If A is diagonalizable, then A = ±I2. If A is not diagonalizable,

then A = ±P−1

�
1 t
0 1

�
P for some t ∈ R and P ∈ Gl(2, R), i.e., A is

similar to a shear mapping.

(3) Hyperbolic. Now |T | > 2 and A has two distinct real eigenvalues, one

inverse of the other: A = P−1

�
λ 0
0 1/λ

�
P for some λ �= 0 and P ∈

Gl(2, R), i.e., A is similar to a squeeze mapping.

Since the projective homomorphism A =
�

a b
c d

�
�→ ϕ(z) = az+b

cz+d
, z ∈ H

2 ≡

(R2)+ with kernel {±I2} relates matrices in SL(2, R) with Möbius transformations
of the hyperbolic plane, we can translate the above classification of matrices to
this last language. For instance, the rotation Rotθ ∈ Sl(2, R) of angle θ ∈ [0, 2π)
produces the Möbius transformation z ∈ (R2)+ �→ cos(θ)z−sin(θ)

sin(θ)z+cos(θ) , which corresponds
in the Poincaré disk model of H

2 to the rotation of angle −2θ around the origin.
This idea allows us to list the three types of 1-parameter subgroups of PSL(2, R):

(1) Elliptic subgroups. Elements of these subgroups correspond to contin-
uous rotations around any fixed point in H

2. In the Poincaré disk model,
these 1-parameter subgroups fix no points in the boundary at infinity
∂∞H

2 = S
1. If Γp1 ,Γp2 are two such elliptic subgroups where each Γpi

fixes the point pi, then Γp1 = (p1p
−1
2 )Γp2(p1p

−1
2 )−1.

(2) Hyperbolic subgroups. These are translations along any fixed geodesic
Γ in H

2. In the Poincaré disk model, the hyperbolic subgroup associated
to a geodesic Γ fixes the two points at infinity corresponding to the end
points of Γ. In the upper halfplane model (R2)+ for H

2, we can assume
that the invariant geodesic Γ is the positive imaginary half-axis, and then
the corresponding 1-parameter subgroup is {ϕt(z) = etz}t∈R, z ∈ (R2)+.
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Figure 1. Orbits of the actions of 1-parameter subgroups of
PSL(2, R). Left: Elliptic. Center: Hyperbolic. Right: Parabolic.

As in the elliptic case, every two 1-parameter hyperbolic subgroups are
conjugate.

(3) Parabolic subgroups. In the Poincaré disk model, these are the ro-
tations about any fixed point θ ∈ ∂∞H

2. They only fix this point θ at
infinity, and leave invariant the 1-parameter family of horocycles based at
θ. As in the previous cases, parabolic subgroups are all conjugate by ellip-
tic rotations of the Poincaré disk. In the upper halfplane model (R2)+ for
H

2, we can place the point θ at∞ and then the corresponding 1-parameter
subgroup is {ϕt(z) = z + t}t∈R, z ∈ (R2)+. Every parabolic subgroup is a
limit of elliptic subgroups (simply consider a point θ ∈ ∂∞H

2 as a limit of
centers of rotations in H

2). Also, every parabolic subgroup can be seen as
a limit of hyperbolic subgroups (simply consider a point θ ∈ S

1 as a limit
of suitable geodesics of H

2), see Figure 1.
Coming back to the language of matrices in SL(2, R), it is worth while com-

puting a basis of the Lie algebra sl(2, R) in which the Lie bracket adopts the form
(2.24). A matrix in sl(2, R) which spans the Lie subalgebra of the particular elliptic

subgroup {Rotθ | θ ∈ R} is E3 =
�

0 −1
1 0

�
. Similarly, the parabolic subgroup

associated to {ϕt(z) = z + t}t∈R, z ∈ (R2)+, produces the left invariant vector field

B2 =
�

0 1
0 0

�
∈ sl(2, R). In the hyperbolic case, the subgroup {ϕt(z) = e2tz}t∈R,

z ∈ (R2)+, has related 1-parameter in SL(2, R) given by the matrices
�

et 0
0 e−t

�
,

with associated left invariant vector field E1 :=
�

1 0
0 −1

�
∈ sl(2, R). The Lie

bracket in sl(2, R) is given by the commutator of matrices. It is elementary to check
that [B2, E3] = E1, [E1, B2] = 2B2, [E3, E1] = 2E3 + 4B2, which does not look like
the canonical expression (2.24) valid in any unimodular group. Note that E1, E3

are orthogonal in the usual inner product of matrices, but B2 is not orthogonal to

E3. Exchanging B2 by E2 =
�

0 1
1 0

�
∈ sl(2, R) ∩ Span{E1, E3}⊥, we have

(2.29) [E1, E2] = −2E3, [E2, E3] = 2E1, [E3, E1] = 2E2,

which is of the form (2.24). Note that E2 corresponds to the 1-parameter hyperbolic
subgroup of Möbius transformations ϕt(z) = cosh(t)z+sinh(t)

sinh(t)z+cosh(t) , z ∈ (R2)+.
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We now describe the geometry of the 1-parameter subgroups Γv = exp({tv | t ∈
R}) of �SL(2, R) in terms of the coordinates of a tangent vector v �= 0 at the identity
element e of �SL(2, R), with respect to the basis {E1, E2, E3} of sl(2, R). Consider
the left invariant metric �, � that makes {E1, E2, E3} an orthonormal basis. Using
(2.29), (2.25) and (2.27), we deduce that the metric Lie group (�SL(2, R), �, �) is
isometric to an E(κ, τ)-space with κ = −4 and τ2 = 1 (recall that the eigenvalues
of the Ricci tensor on E(κ, τ) are κ− 2τ2 double and 2τ2 simple). Let

Π : E(−4, 1) → H
2(−4)

be a Riemannian submersion onto the hyperbolic plane endowed with the metric of
constant curvature −4. Consider the cone {(a, b, c) | a2 + b2 = c2} in the tangent
space at the identity of �SL(2, R), where the (a, b, c)-coordinates refer to the coordi-
nates of vectors with respect to the basis {E1, E2, E3} at Te

�SL(2, R). If a = b = 0,
then Γv = exp({tv | t ∈ R}) is the lift to �SL(2, R) of the elliptic subgroup of rota-
tions of H

2(−4) around the point Π(e). If c = 0, then Γv is the hyperbolic subgroup
obtained after horizontal lift of the translations along a geodesic in H

2(−4) passing
through Π(e), and Γv is a geodesic in the space E(−4, 1). If a2 + b2 = c2, then
Π(Γv) is a horocycle in H

2(−4), and it is the orbit of Π(e) under the action of the
parabolic subgroup Π(Γv) on H

2(−4). If a2 + b2 < c2 then Π(Γv) is a constant ge-
odesic curvature circle passing through Π(e) and completely contained in H

2(−4),
and Π(Γv) is the orbit of Π(e) under the action of the elliptic subgroup Π(Γv) on
H

2(−4). Finally, if a2 + b2 > c2 then Π(Γv) is a constant geodesic curvature arc
passing through Π(e) with two end points in the boundary at infinity of H

2(−4),
and Π(Γv) is the orbit of Π(e) under the action of the hyperbolic subgroup Π(Γv)
on H

2(−4). In this last case, Π(Γv) is the set of points at fixed positive distance
from a geodesic γ in H

2(−4), and Γv is the lift to �SL(2, R) of the set of hyperbolic
translations of H

2(−4) along γ.
Regarding the two-dimensional subgroups of PSL(2, R), equation (2.29) eas-

ily implies that sl(2, R) has no two-dimensional commutative subalgebras. Thus,
PSL(2, R) has no two-dimensional subgroups of type R

2: all of them are of H
2-type.

For each θ ∈ ∂∞H
2, we consider the subgroup

(2.30) H
2
θ

= {orientation-preserving isometries of H
2 which fix θ}.

Elements in H
2
θ

are rotations around θ (parabolic) and translations along geodesics
one of whose end points is θ (hyperbolic). As we saw in Section 2.1, H

2 = H
2
θ

is
isomorphic to R �(1) R. It is worth relating the 1-parameter subgroups of both
two-dimensional groups. The subgroup R�(1) {0} is normal in R�(1) R (this is not
normal as a subgroup of PSL(2, R) since this last one is simple) and corresponds
to the parabolic subgroup of PSL(2, R) fixing θ, while the subgroup {0} �(1) R of
R �(1) R corresponds to a hyperbolic 1-parameter subgroup of translations along a
geodesic one of whose end points is θ. The other 1-parameter subgroups of R

2
�(1)R

are Γs = {(s(et − 1), t) | t ∈ R} for each s ∈ R, each of which corresponds to the
hyperbolic 1-parameter subgroup of translations along one of the geodesics in H

2

with common end point θ, see Figure 2.
The family of left invariant metrics on �SL(2, R) has three parameters, which

can be realized by changing the lengths of the left invariant vector fields E1, E2, E3

defined just before (2.29), but keeping them orthogonal. Among these metrics we
have a 2-parameter family, each one having an isometry group of dimension four;
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Figure 2. Two representations of the two-dimensional subgroup
H

2
θ

of PSL(2, R), θ ∈ ∂∞H
2. Left: As the semidirect product

R �(1) R. Right: As the set of orientation-preserving isometries of
H

2 which fix θ. Each of the curves in the left picture corresponds
to the orbit of a 1-parameter subgroup of R �(1) R.

these special metrics correspond to the case where one changes the lengths of E1

and E2 by the same factor. The generic case of a left invariant metric on �SL(2, R)
has a three-dimensional group of isometries.

The universal cover of the group of orientation-preserving rigid motions
of the Euclidean plane, �E(2). The universal cover �E(2) of the group E(2) of
orientation-preserving rigid motions of the Euclidean plane is isomorphic to the

semidirect product R
2

�A R with A =
�

0 −1
1 0

�
. �E(2) carries a 2-parameter

family of left invariant metrics, which can be described as follows. Using coordinates
(x, y, z) in �E(2) so that (x, y) are standard coordinates in R

2 ≡ R
2

�A {0} and z

parametrizes R ≡ {0}�A R, then ezA =
�

cos z − sin z
sin z cos z

�
and so, (2.2) gives the

group operation as

(x1, y1, z1)∗ (x2, y2, z2) = (x1 +x2 cos z1−y2 sin z1, y1 +x2 sin z1 +y2 cos z1, z1 +z2).

A basis of the Lie algebra g of �E(2) is given by (2.6):

E1(x, y, z) = cos z ∂x + sin z ∂y, E2(x, y, z) = − sin z ∂x + cos z ∂y, E3 = ∂z.

A direct computation (or equations (2.9), (2.10)) gives the Lie bracket as

[E1, E2] = 0, [E2, E3] = E1, [E3, E1] = E2,

compare with equation (2.24).
To describe the left invariant metrics on �E(2), we first declare E3 = ∂z to

have length one (equivalently, we will determine the left invariant metrics up to
rescaling). Given ε1, ε2 > 0, we declare the basis {E�1 = ε1E1, E�2 = ε2E2, E�3 = E3}
to be orthonormal. This defines a left invariant metric �, � on �E(2). Then,

[E�2, E
�

3] = ε2[E2, E3] = ε2E1 =
ε2

ε1
E�1, [E�3, E

�

1] = ε1[E3, E1] = ε1E2 =
ε1

ε2
E�2.

Hence the basis {E�1, E�2, E�3} satisfies equation (2.24) with c1 = ε2
ε1

and c2 = ε1
ε2

= 1
c1

(c3 is zero). Now we relabel the E�
i
as Ei, obtaining that {E1, E2, E3} is an orthonor-

mal basis of �, � and [E1, E2] = 0, [E3, E1] = 1
c1

E2, [E2, E3] = c1E1. Comparing
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these equalities with (2.9), (2.10) we conclude that (�E(2), �, �) is isomorphic and
isometric to the Lie group R

2
�A(c1) R endowed with its canonical metric, where

(2.31) A(c1) =
�

0 −c1

1/c1 0

�
, c1 > 0.

In fact, the matrices A(c1), A(1/c1) given by (2.31) are congruent, hence we can
restrict the range of values of c1 to [1,∞). Now we have obtained an explicit
description of the family of left invariant metrics on �E(2) (up to rescaling).

The solvable group Sol3. As a group, Sol3 is the semidirect product R
2
�AR with

A =
�
−1 0

0 1

�
. As in the case of �E(2), Sol3 carries a 2-parameter family of left

invariant metrics, which can be described in a very similar way as in the case of the
universal cover �E(2) of the Euclidean group, so we will only detail the differences
between both cases. Using standard coordinates (x, y, z) in Sol3 = R

2
�A R, a basis

of the Lie algebra g of Sol3 is given by

E1(x, y, z) = e−z∂x, E2(x, y, z) = ez∂y, E3 = ∂z,

and the Lie bracket is determined by the equations

(2.32) [E1, E2] = 0, [E3, E2] = E2, [E3, E1] = −E1.

To describe the left invariant metrics on Sol3, we declare the basis {E�1 =
ε1(E1 + E2), E�2 = ε2(E1 − E2), E�3 = E3} to be orthonormal, for some ε1, ε2 > 0
(again we are working up to rescaling). Then,

[E�2, E
�

3] = ε2(E1 + E2) =
ε2

ε1
E�1, [E�3, E

�

1] = ε1(−E1 + E2) = −ε1

ε2
E�2

and thus, the basis {E�1, E�2, E�3} satisfies equation (2.24) with c1 = ε2
ε1

and c2 =
− 1

c1
and c3 = 0. After relabeling the E�

i
as Ei, we find that {E1, E2, E3} is an

orthonormal basis with [E1, E2] = 0, [E3, E1] = − 1
c1

E2, [E2, E3] = c1E1. From here
and (2.9), (2.10), we deduce that up to rescaling, the metric Lie groups supported
by Sol3 are just R

2
�A(c1) R endowed with its canonical metric, where

(2.33) A(c1) =
�

0 c1

1/c1 0

�
, c1 > 0.

(Note that we have used that a change of sign in the matrix A = A(c1) just cor-
responds to a change of orientation). Finally, since the matrices A(c1), A(1/c1)
in (2.33) are congruent, we can restrict the range of c1 to [1,∞) in this last descrip-
tion of left invariant metrics on Sol3.

2.8. Moduli spaces of unimodular and non-unimodular three-dimen-
sional metric Lie groups. The moduli space of unimodular, three-dimensional
metric Lie groups can be understood with the following pictorial representation
that uses the numbers c1, c2, c3 in (2.24), see also Table 1 in Section 2.6. In these
(c1, c2, c3)-coordinates, SU(2) corresponds to the open positive quadrant {c1 >
0, c2 > 0, c3 > 0} (three-dimensional, meaning that the space of left invariant
metrics on SU(2) is three-parametric) and �SL(2, R) to the open quadrant {c1 >
0, c2 > 0, c3 < 0} (also three-dimensional). Both three-dimensional quadrants have
a common part of their boundaries which corresponds to the set of left invariant
metrics on �E(2), which is represented by the two-dimensional quadrant {c1 > 0, c2 >
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Figure 3. Pictorial representation of the three-dimensional uni-
modular metric Lie groups. The upper quarter of plane {c1 =
c2, c3 > 0} corresponds to the Berger spheres, while the lower
quarter {c1 = c2, c3 < 0} corresponds to the E(κ, τ)-spaces with
κ < 0, τ �= 0, which are isometric to �PSL(2, R) with certain re-
lated left invariant metrics. In rigor, �E(2) is also in the boundary
2-dimensional quadrants {c1 > 0, c2 = 0, c3 > 0} ∪ {c1 = 0, c2 >
0, c3 > 0} (this is just a permutation of the roles of the subindexes
in the ci), and Sol3 is also in the boundary 2-dimensional quadrants
{c1 > 0, c2 = 0, c3 < 0} ∪ {c1 = 0, c2 > 0, c3 < 0}.

0, c3 = 0}. Sol3 corresponds to the two-dimensional quadrant {c1 > 0, c2 < 0, c3 =
0}. The two-dimensional quadrants corresponding to �E(2) and Sol3 have in their
common boundaries the half line {c1 > 0, c2 = c3 = 0}, which corresponds to the
1-parameter family of metrics on Nil3 (all the same after rescaling). The origin
{c1 = c2 = c3} corresponds to R

3 with its usual metric, see Figure 3.

A description of the moduli space of non-unimodular, three-dimensional metric
Lie groups is as follows. By Lemma 2.11, any such metric Lie group is isomorphic
and isometric to R

2
�A R for some matrix A ∈ M2(R) with trace(A) > 0. The

space of such matrices is four-dimensional, but the corresponding moduli space of
metric Lie groups is 2-parametric after scaling, as follows from Lemma 2.12 (recall
that the condition trace(A) = 2, which is assumed in Lemma 2.12, is equivalent to
scaling the metric by the multiplicative factor 1

4 trace(A)2).
(1) The cases D < 1 produce diagonalizable matrices A = A(D, b) given

by (2.19), with a = a(b) defined by (2.22) for any b ∈ [0,∞), also
see (2.21). The matrix A has two different eigenvalues adding up to 2
(the discriminant of the characteristic equation of A is 4(1 − D) > 0).
The matrices A(D, b = 0) converge as D → 1− to I2. Hence, the corre-
sponding metric Lie groups R

2
�A(D,0) R limit as D → 1− to H

3 with its
usual metric. The remaining metric Lie groups with D-invariant equal to
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1 can be also obtained as a limit of appropriately chosen metric Lie groups
of the form R

2
�A(Dn,b) R for any fixed value b > 0 and Dn → 1−.

Regarding the limit of the non-unimodular metric Lie groups as D →
−∞, they limit to the unimodular group Sol3 equipped with any of its
left invariant metrics: this follows by considering, given ε > 0 and c1 ≥ 1,
the matrix

A1(c1, ε) =
�

ε c1

1/c1 ε

�
.

Since trace(A1(c1, ε)) = 2ε �= 0, then R
2

�A1 R with A1 = A1(c1, ε)
produces a non-unimodular Lie group. Its D-invariant (note that A1(c1, ε)
is not normalized to have trace = 2) is

4 det(A1(c1, ε))
trace(A1(c1, ε))2

= 1− 1
ε2

,

which limits to −∞ as ε → 0+. Finally, the limit of A1(c1, ε) as ε → 0+

is the matrix A(c1) defined by (2.33), which, after scaling, describes an
arbitrary left invariant metric on Sol3.

(2) As we explained above, the case D = 1 only produces two group struc-
tures, that of H

3 when the matrix A is a multiple of the identity matrix,
and a second group X non-isomorphic to H

3. H
3 can only be equipped

with a 1-parameter family of left invariant metrics, all the same up to scal-
ing to the standard metric of constant curvature −1. X has a 2-parameter
family of left invariant metrics: one parameter is the scaling factor to get
the condition trace(A) = 2, and the other one is given by the equation
1 = D = (1− a2)(1 + b2) in the matrix representation (2.19).

(3) In the case D > 1 we have for each value of D a unique group struc-
ture, which supports a 2-parameter family of left invariant metrics by
Lemma 2.12. One of these parameters is the scaling factor to get trace(A) =
2 and the other one is b ∈ [

√
D − 1,∞) so that A = A(D, b) given by (2.19)

and (2.22) is the matrix whose canonical metric on R
2

�A R is the de-
sired metric. As we saw in the proof of Lemma 2.13, the particular case
A(D, b =

√
D − 1) produces a = 0 in (2.22), and the canonical metric on

the Lie group G(D) = R
2

�
A(D,

√
D−1) R has constant sectional curvature

−1 by (2.23) for any D > 1. These are metric Lie groups not isomorphic
to H

3 but isometric to this space form. Clearly, the limit as D → 1+ of
G(D) with its canonical metric is H

3 with its standard metric, but with
other choices of b ∈ [

√
D − 1,∞) and then taking limits as D → 1+ in

R
2
�A(D,b) R produces all possible different metric Lie groups R

2
�A(1,b) R

with underlying group structure X described in item (2) above.
To compute the limit of R

2
�A(D,b) R as D → ∞, take c1 ∈ (0, 1]

and define b(D) = 1
2c1

�
(1 + c2

1)2D − 4c2
1, which makes sense if D is large

enough in terms of c1. It is elementary to check that b(D) ≥
√

D − 1,
hence it defines a(D) = a(b(D)) by equation (2.22), and that 1−a(D)

1+a(D) = c2
1.

Now consider the matrix

A1(D, c1) =
c1

(1− a(D))b(D)
A(D, b(D))

(2.19)
=

�
1

c1b(D) −c1
1
c1

c1
b(D)

�
.
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Figure 4. Representation of the moduli space of three-
dimensional, non-unimodular metric Lie groups in terms of points
in the (D, b)-plane, so that the group is R

2
�A(D,b)R with A(D, b) ∈

M2(R) scaled to have trace = 2. X denotes the unique three-
dimensional, non-unimodular Lie group with D-invariant D = 1
which is not isomorphic to H

3. All points in the line D = 0
correspond to the Lie group H

2
� R although metrically only

(D, b) = (0, 0) corresponds to the product homogeneous manifold;
the other points in the line D = 0 represent metrically the E(κ, τ)
space with κ = −4 and τ = b. The dotted lines in the interior of
the region {(D, b) | D > 1,

√
D − 1 ≤ b}, correspond to the curves

D �→ (D, 1
2c1

�
(1 + c2

1)2D − 4c2
1) for c1 ∈ (0, 1] fixed, whose corre-

sponding metric Lie groups converge after rescaling to �E(2) with
any left invariant metric depending on c1.

Since b(D) tends to∞ as D →∞, then the limit of A1(D, c1) as D →∞ is
the matrix A(c1) defined in (2.31). This means that the limit as D →∞ of
the non-unimodular metric Lie groups is, after a suitable rescaling, �E(2)
with any of its left invariant metrics (note that we have considered an
arbitrary value c1 ∈ (0, 1], which covers all possible left invariant metrics
on �E(2), see the paragraph which contains (2.31)). Of course, the limit of
G(D) as D →∞ is, after homothetic blow-up, the flat �E(2). See Figure 4.

Finally, given ε > 0 and δ ∈ R, consider the matrix B(ε, δ) =
�

ε 1
δ ε

�
. The

normalized D-invariant of B = B(ε, δ) is

4 det(B)
trace(B)2

= 1− δ

ε2
,

which covers all possible real values (in fact, we can restrict to values of δ in any
arbitrarily small interval around 0 ∈ R). In particular, any non-unimodular Lie
group structure different from H

3 can be represented as R
2
�B(ε,δ)R for appropriate
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ε, δ. Clearly, the limit of B(ε, δ) as (ε, δ) → (0, 0) is
�

0 1
0 0

�
, which corresponds

to Nil3. This implies that for every non-unimodular Lie group different from H
3,

there exists a sequence of left invariant metrics on it such that the corresponding
sequence of metric Lie groups converges to Nil3 with its standard metric.

2.9. Three-dimensional unimodular metric semidirect products.
Among the list of three-dimensional unimodular Lie groups, those which can be
expressed as a semidirect product R

2
�A R for some matrix A ∈ M2(R), are

just �E(2), Sol3, Nil3 and R
3 (SU(2) is excluded since it is compact and �SL(2, R) is

excluded because its only normal subgroup is its center which is infinite cyclic). Now
we can summarize some of the results obtained so far in the following description
of all possible left invariant metrics on these groups, in terms of the matrix A.

Theorem 2.15 (Classification of unimodular metric semidirect products). Let

(G, �, �) be a unimodular metric Lie group which can be expressed as a semidirect

product R
2

�A R, A �= 0. Then, there exists an orthonormal basis E1, E2, E3 for

the Lie algebra g of G so that [E1, E2] = 0, and:

(1) Each of the integral leaves R
2
�A{z} of the distribution spanned by E1, E2

has unit normal vector field ±E3 and its mean curvature is equal to
1
2 trace(A) = 0.

(2) After scaling the metric, the matrix A can be chosen uniquely as:

A =
�

0 ± 1
a

a 0

�
for a ∈ [1,∞), or A =

�
0 1
0 0

�
,

in the sense that (G, �, �) is isomorphic and isometric to R
2

�A R with its

canonical metric.

(3) If det(A) = −1 (resp. det(A) = 1, det(A) = 0), then the group is Sol3
(resp. �E(2), Nil3) and the corresponding matrices A produce all its left

invariant metrics (up to scaling).

2.10. The exponential map. Given an n-dimensional Lie group X, the ex-
ponential map exp: g → X gives a diffeomorphism from a neighborhood of the
origin in the Lie algebra g of X onto a neighborhood of the identity element e in X.
In this section we will show that if X is three-dimensional and simply-connected,
then exp is a global diffeomorphism except in the cases X = SU(2), �SL(2, R) and
�E(2) where this property fails to hold.

Since SU(2) is compact and connected, then exp: g = su(2) → SU(2) is onto3

but it cannot be injective; here

su(2) =
��

iλ a
−a −iλ

�
| λ ∈ R, a ∈ C

�
.

Regarding �SL(2, R), it suffices to show that the exponential map of SL(2, R) is
not onto. The Lie algebra of SL(2, R) is sl(2, R) = {B ∈M2(R) | trace(B) = 0}.
A straightforward computation gives that

trace(eB) = 2 cosh(
�
−det(B)).

3The exponential map of a compact Lie group is always surjective onto the identity
component.
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If det(B) > 0, then cosh(
�
−det(B)) = cos(

�
det(B)) and hence trace (eB) ≥ −2.

On the other hand, if det(B) ≤ 0, then
�
−det(B) ∈ R and trace(eB) ≥ 2. Thus

exp(sl(2, R)) ⊂ {A ∈ Sl(2, R) | trace(A) ≥ −2} which proves that exp: sl(2, R) →
Sl(2, R) is not onto.

Finally, in the case of �E(2), exp is neither injective nor onto, see the proof of
the next result and also see Remark 2.17 for details.

Proposition 2.16. Let X be a three-dimensional Lie group with Lie algebra g.

Suppose that X is not isomorphic to SU(2), �SL(2, R) or �E(2). Then, the exponential

map exp: g → X is a diffeomorphism.

Proof. Suppose X is not isomorphic to either SU(2) or �SL(2, R) (for the
moment, we do not exclude the possibility of X being isomorphic to �E(2)). By the
results in Sections 2.5 and 2.6, X is isomorphic to a semidirect product R

2
�A R

for some A ∈M2(R).
Recall that the basis E1, E2, E3 of g given by (2.6) satisfies Ei(0, 0, 0) = ei,

where e1, e2, e3 is the usual basis of R
3. Given (α,β, λ) ∈ R

3, the image by exp of
αE1+βE2+λE3 is the value at t = 1 of the 1-parameter subgroup γ : R → R

2
�A R

such that γ�(0) = αe1 + βe2 + λe3. We next compute such a subgroup.
Writing γ(t) = (p(t), z(t)) (here p = (x, y) are the usual coordinates in R

2),
then (2.2) implies

�
p(t) + eAz(t)p(s), z(t) + z(s)

�
= γ(t) ∗ γ(s) = γ(t + s) = (p(t + s), z(t + s)) .

It follows that z : R → R is a group homomorphism, hence z(t) = µt for some
µ ∈ R. Obviously µ = λ as γ�(0) = αe1 + βe2 + λe3. Taking derivatives in
p(t + s) = p(t) + eAz(t)p(s) with respect to t and evaluating at t = 0, we obtain

p�(s) = p�(0) + z�(0)AeAz(0)p(s) = p�(0) + λAp(s),

which is a linear ODE of first order with constant coefficients and initial condition
p(0) = 0 ∈ R

2. Integrating this initial value problem we have

p(s) = B(s, λ)p�(0) where B(s, λ) = eλsA

�
s

0
e−λτAdτ,

from where

exp(αE1 + βE2 + λE3) = γ(1) = (p(1), z(1)) = (B(1, λ)p�(0), λ) ∈ R
2

�A R,

where p�(0) = (α,β). Since λ ∈ R �→ B(1, λ) is smooth, then the property that
exp: g → R

2
�A R is a diffeomorphism is equivalent to the invertibility of B(1, λ)

for all λ ∈ R.
If λ = 0, then B(1, 0) = I2, hence we can assume λ �= 0 for the remainder of

this proof.
If A = δI2 for some δ ∈ R (we can assume δ �= 0 since otherwise R

2
�A R =

R
3 × R = R

3 and there is nothing to prove), then

B(s, λ) = eλδs

�
s

0
e−λδτdτI2 =

eλδs

λδ
(1− e−λδs)I2,

which is invertible for all s ∈ R − {0}. Hence in the sequel we will assume that A
is not a multiple of I2.
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Since A is not a multiple of I2, there exists P ∈ Gl(2, R) such that A = P−1A1P

where A1 =
�

0 −D
1 T

�
. Thus,

B(s, λ) = P−1eλsA1P

�
s

0
P−1e−λτA1P dτ = P−1

�
eλsA1

�
s

0
e−λτA1 dτ

�
P,

which implies that we may assume A = A1 in our study of the invertibility of
B(1, λ). We now distinguish two cases.

Case 1: D = 0. In this case,

B(s, λ) =






�
s 0

λs2/2 s

�
if T = 0,

�
s 0

e
λTs−Tλs−1

λT 2
e
λTs−1
λT

�
if T �= 0,

hence B(s, λ) is invertible for all s ∈ R− {0}.

Case 2: D �= 0. A long but straightforward computation gives

det(B(1, λ)) =
1

Dλ2

�
1 + eλT − 2e

λT
2 cos(λw)

�
,

where T

2 ± iw are the complex eigenvalues of A (here w ∈ R). Now, estimating
cos(λw) ≤ 1 we have 1 + eλT − 2e

λT
2 cos(λI) ≥ (eλT

2 − 1)2. Hence,

|det(B(1, λ))| ≥ (eλT
2 − 1)2

|D|λ2
,

from where the desired invertibility of B(1, λ) for all λ ∈ R holds whenever T �= 0.
Finally, if T = 0 (we still assume D �= 0) then

λ B(s, λ) =






�
sin(
√

Dλs)√
D

cos(
√

Dλs)− 1
1−cos(

√
Dλs)

D

sin(
√

Dλs)√
D

�
if D > 0,

�
sinh(

√
−Dλs)√
−D

cosh(
√
−Dλs)− 1

1−cosh(
√
−Dλs)

D

sinh(
√
−Dλs)√
−D

�
if D < 0.

In particular,

λ2D

2
detB(s, λ) =

�
1− cos(

√
Dλs) if D > 0,

1− cosh(
√

Dλs) if D < 0.

In the case D < 0 we conclude that B(s, λ) is invertible for all s ∈ R − {0},
while in the case D > 0 the invertibility of B(s, λ) fails to hold exactly when√

Dλs ∈ 2πZ − {0} (in fact, B(s, 0) = sI2 after applying the L’Hopital rule, and
B(s, λ) = 0 ∈ M2(R) if

√
Dλs ∈ 2πZ − {0}). Finally, note that since scaling

the matrix A does not affect the Lie group structure of R
2

�A R, we can reduce
the case D > 0, T = 0 to the matrix A =

�
0 −1
1 0

�
, which corresponds to

R
2

�A R = �E(2). �



34 WILLIAM H. MEEKS III AND JOAQUÍN PÉREZ

Remark 2.17. The last proof shows that when X is isomorphic to �E(2),
then B(1, λ) = 1

λ

�
sin λ −1 + cos λ

1− cos λ sin λ

�
whenever λ �= 0. This formula extends

to λ = 0 with B(1, 0) = I2. Therefore, exp: g → �E(2) maps the horizontal slab
S(−2π, 2π) = {(α,β, λ) | −2π < λ < 2π} ⊂ g (here we are using coordinates w.r.t.
E1, E2, E3) diffeomorphically onto R

2
�A (−2π, 2π), where A =

�
0 −1
1 0

�
. Each

of the boundary planes Π(±2π) = {λ = ±2π} of S(−2π, 2π) is mapped under exp
to one of the points (0, 0,±2π). Hence exp |Π(2π) is not injective and the differential
of exp at every point in Π(2π) is zero (the same property holds for Π(−2π); in fact,
the behavior of exp is periodic in the vertical variable λ with period 2π). In par-
ticular, exp(g) consists of the complement of the union of the punctured horizontal
planes [R2

�A {2kπ}]− {(0, 0, 2kπ)}, k ∈ Z− {0}.
Regarding the 1-parameter subgroups of �E(2), their description is as follows.

Let γ : R → �E(2) be the 1-parameter subgroup determined by the initial condition
γ�(0) = (p�(0), λ) �= (0, 0) ∈ R

2 × R where p�(0) ∈ R
2.

• If p�(0) = 0, then γ(R) is the z-axis in R
2

�A R.
• If λ = 0, then γ(R) is the horizontal straight line {(tp�(0), 0) | t ∈ R} ⊂

R
2

�A {0}.
• If λ �= 0 and p�(0) �= 0, then

γ(tp�(0), tλ) =
�

1
λ

�
sin(tλ) −1 + cos(tλ)

1− cos(tλ) sin(tλ)

�
· p�(0)T , tλ

�
,

where p�(0) is considered as a column vector in the right-hand-side. It
is straightforward to check that γ(R) parameterizes the vertical circular
helix with pitch λ over the circle of center 1

λ
Ap�(0) that contains the z-

axis. Each of these 1-parameter subgroups passes through all the points
(0, 0, 2kπ), k ∈ Z, see Figure 5.

2.11. Isometries with fixed points. In this section we study the isometries
of a simply-connected, three-dimensional metric Lie group X which fix some point
in X, in terms of the group structure and metric on X. For an isometry φ : X → X
fixing the identity element e of X, we will denote by Fix0(φ) the component of the
fixed point set of φ which contains e.

Proposition 2.18. Let X be an n-dimensional metric Lie group (not nec-

essarily simply-connected), whose isometry group I(X) is also n-dimensional. If

φ : X → X is an isometry such that φ(e) = e, then φ is a Lie group isomorphism

of X. Furthermore, the following statements hold:

(1) Given a 1-parameter subgroup Γ of X, then φ(Γ) is a 1-parameter subgroup

and φ : Γ → φ(Γ) is a group isomorphism.

(2) Fix0(φ) is a subgroup of X, which is a totally geodesic submanifold in X.

(3) If dφe(v) = v for some v ∈ TeX − {0} and 1 is simple as an eigenvalue of

dφe, then the geodesic γ in X with initial conditions γ(0) = e, γ�(0) = v
is a 1-parameter subgroup of X and γ(R) ⊂ Fix0(φ).

Proof. As φ is an isometry, its differential φ∗ preserves the vector space of
Killing vector fields on X. Since the isometry group of X is assumed to have the
same dimension as X, then every Killing vector field is right invariant; in particular,
φ∗ is a Lie algebra automorphism of the space of right invariant vector fields on
X. By integration, φ is an isomorphism of the opposite group structure � of X:
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Figure 5. The 1-parameter subgroups of �E(2) with initial condi-
tion γ�(0) = (eiθ, λ) ∈ C × R ≡ R

2 × R (λ �= 0 fixed) foliate a
surface invariant under vertical translation by (0, 0, 2π) minus in-
finitely many peak singularities occurring at the points (0, 0, 2kπ),
k ∈ Z, one of which fundamental domains Sλ has been represented
here. Sλ is a surface invariant under revolution around the z-axis
in the natural (x, y, z)-coordinates and it has two cusp singulari-
ties, at the origin (lower horizontal plane) and at (0, 0, 2π) (upper
horizontal plane). Each of the 1-parameter subgroups that foliate
the periodic surface ∪k∈Z[Sλ + (0, 0, 2kπ)] − {cusps} is a vertical
circular helix with pitch λ over a circle of radius 1

λ
which contains

the z-axis. The surfaces Sλ obtained for different values of λ differ
in the angle of the cusps, but not in the cusps themselves.

φ(x � y) = φ(x) � φ(y), where x � y = yx, x, y ∈ X. Then φ(xy) = φ(y � x) =
φ(y) � φ(x) = φ(x)φ(y), which proves that φ is a Lie group automorphism of X.

The properties in items (1), (2) and (3) follow immediately from the main
statement and the fact that the fixed point set of an isometry of a Riemannian
manifold is always totally geodesic. For example, to prove item (2) recall that the
fixed point set of an automorphism of a group is always a subgroup. �

Corollary 2.19. Let X be an n-dimensional metric Lie group (not necessarily

simply-connected), whose isometry group I(X) is also n-dimensional. If φ : X → X
is an isometry, then each component Σ of the fixed point set of φ is of the form pH
for some subgroup H of X.

Proof. Let Σ be a component of the fixed point set of φ, and take p ∈ Σ.
Then the isometry ψ = l−1

p
◦φ◦ lp satisfies ψ(e) = e and has p−1Σ as the component

of its fixed point set passing through e. By Proposition 2.18, p−1Σ is a subgroup
of X from which the corollary follows. �

Definition 2.20. Given a point p in a Riemannian n-manifold X, we say that
a tangent vector v ∈ TpX − {0} is a principal Ricci curvature direction at p if v is
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an eigenvector of the Ricci tensor at p. The corresponding eigenvalue of the Ricci
tensor at p is called a principal Ricci curvature.

If the Riemannian n-manifold X is homogeneous, then clearly the principal
Ricci curvatures are constant. The usefulness of the concept of principal Ricci
curvature direction in our setting where X is a three-dimensional metric Lie group
is that when the three principal Ricci curvatures of X are distinct, then there is an
orthonormal basis E1, E2, E3 of the Lie algebra of X such that for any isometry φ of
X, the differential of φ satisfies φ∗(Ei) = ±Ei. In particular, in this case φ∗ : g → g
is an Lie algebra isomorphism.

Given a Riemannian manifold X and a point p ∈ X, the stabilizer of p is
Stabp = {φ ∈ I(X) | φ(p) = p}, which is a subgroup of the isometry group I(X)
of X. We will denote by Stab+

p
the subgroup of Stabp of orientation-preserving

isometries.

Proposition 2.21. Let X be a simply-connected, three-dimensional metric Lie

group. Given any element p ∈ X and a unitary principal Ricci curvature direction

v at p, the following properties are true:

(1) If X is unimodular and v goes in the direction of one of the vectors
4 (Ei)p

with Ei ∈ g given by (2.24), i = 1, 2, 3, then there exists an element

φ ∈ Stab+
p

of order two such that dφp(v) = v. In particular, Stab+
p

contains a dihedral group D2(p) ∼= Z2 × Z2. Furthermore, if the isometry

group I(X) of X is of dimension three, then Stab+
p

= D2(p).
(2) If the isometry group I(X) of X is of dimension four, then there exists a

unique principal Ricci direction w at p whose Ricci eigenvalue is different

from the other Ricci eigenvalue (which has multiplicity two), and Stab+
p

contains an S
1
-subgroup, all whose elements have differentials at p which

fix w.

(3) If I(X) has dimension six, then Stabp is naturally isomorphic to the or-

thogonal group O(3).
(4) If X = R

2
�A R is non-unimodular and I(X) has dimension three (here

A ∈M2(R)), then Stab+
p

= {1X , lp ◦ ψ ◦ lp−1} ∼= Z2, where ψ : X → X is

the isometry (x, y, z) �→ (−x,−y, z).

Proof. First suppose that the isometry group of X has dimension six. In this
case X has constant curvature and item (3) is well-known to hold.

Next suppose that the isometry group of X has dimension four. It is also well-
known that in this case, X is isometric to an E(κ, τ)-space, for which the statement
in item (2) can be directly checked.

Assume that X is unimodular with isometry group of dimension three, and let
us denote its left invariant metric by g. As explained in Section 2.6, there exists a
g-orthonormal basis E1, E2, E3 of g which satisfies (2.24) and this basis diagonalizes
the Ricci tensor of X. By hypothesis v is one of these directions E1, E2, E3, say v =
E3. Recall that changing the left invariant metric of X corresponds to changing the

4This condition for v is necessary: consider the left invariant metric on Sol3 given by the
structure constants c1 = −c2 = 1, c3 = 0. Then, (2.25) produces −µ1 = µ2 = 1, µ3 = 0 and
(2.27) gives Ric(E1) = Ric(E2) = 0, Ric(E3) = −2, hence all vectors v in the two-dimensional
linear subspace of g = TeSol3 spanned by {(E1)e, (E2)e} are principal Ricci curvature directions,
although those which admit the desired φ ∈ Stab+

e of order two such that dφp(v) = v reduce to v

in the direction of either E1 or E2.
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lengths of E1, E2, E3 while keeping them orthogonal (this corresponds to changing
the values of the constants c1, c2, c3 in (2.24) without changing their signs). During
this deformation, these vector fields continue to be principal Ricci directions of
the deformed metric. Perform such a deformation until arriving to a special left
invariant metric g0 on the same Lie group, which is determined depending on the Lie
group as indicated in the following list, see the paragraph in which equation (2.24)
lies.

(1) If X is isomorphic to SU(2), then g0 is a metric of constant sectional
curvature.

(2) If X is isomorphic to �SL(2, R), then g0 is the E(κ, τ)-metric given by the
structure constants c1 = c2 = 1, c3 = −1 (up to a permutation of the
indexes of the ci).

(3) If X is isomorphic to �E(2), then g0 is the flat metric given by the structure
constants c1 = c2 = 1, c3 = 0 (up to a permutation).

(4) If X is isomorphic to Sol3, then g0 is the metric given by the structure
constants c1 = −c2 = 1, c3 = 0 (up to a permutation).

(5) If X is isomorphic to Nil3, then g0 = g.
In each of the metric Lie groups (X, g0) listed above, there exists an order two,

orientation-preserving isometry φ of (X, g0) such that φ(p) = p, dφp(v) = v and
whose differential leaves invariant the Lie algebra g of left invariant vector fields of
X. We claim that φ∗g = g, i.e., φ is the desired isometry for (X, g). This follows
from the fact that as an endomorphism of g, the eigenvalues of the differential map
φ∗ are −1,−1, 1, and hence,

(φ∗g)(Ei, Ei) = g(φ∗(Ei), φ∗(Ei)) = g(±Ei,±Ei) = g(Ei, Ei),

for i = 1, 2, 3. Hence φ∗g = g. To complete the proof of item (1) of the proposition
it remains to prove that any σ ∈ Stab+

p
−{1X} is one of these elements φ. Clearly we

can assume p = e. Since we are presently assuming that the isometry group of X is
three-dimensional, then one of the principal Ricci curvature directions has a distinct
principal Ricci curvature value, say E3, and so satisfies σ∗(E3) = ±E3. After
possibly composing σ with the order two isometry φ ∈ Stab+

e
of X corresponding

to rotation of angle π around E1(e) ∈ TeX, we may assume that σ∗(E3) = E3. By
Proposition 2.18, σ is a group isomorphism, and so σ∗(E1) = cos θ E1 + sin θ E2

and σ∗(E2) = − sin θ E1 + cos θ E2 for some θ ∈ [0, 2π) and it suffices to check that
θ = π. Calculating we find that

−c2 sin θ E1 + c2 cos θ E2 = c2 σ∗(E2) = σ∗(c2E2) = σ∗([E3, E1])

= [σ∗(E3), σ∗(E1)] = [E3, cos θ E1 + sin θ E2] = c2 cos θ E2 − c1 sin θ E1.

Since the isometry group of X is assumed to be three-dimensional, then c1 �= c2

and so the above two equations imply that sin θ = 0, which means that θ = π.
Hence, σ is a rotation by angle π around E3 as desired, which completes the proof
of item (1).

To finish the proof, suppose X is a non-unimodular metric Lie group with
isometry group of dimension three. By Lemma 2.11, X is isomorphic and isometric
to R

2
�AR endowed with its canonical metric, for some matrix A ∈M2(R). We can

assume without loss of generality that A is not a multiple of the identity (otherwise
X is isomorphic and homothetic to H

3 with its standard metric, which is covered
in item (3) of this proposition). Hence, up to scaling the metric we can assume
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A has trace 2 and it is given by (2.19). Recall that in the second possibility just
after Lemma 2.11, we constructed an orthonormal5 basis {E1, E2, E3} of the Lie
algebra g of X which diagonalizes the Ricci tensor of X, and the corresponding Ricci
eigenvalues are given by (2.23), from where one easily deduces that if exactly two of
these eigenvalues coincide then the matrix A is given by (2.19) with a = 1. In this
case, the vector field E2 = ∂y given by (2.6) is both left and right invariant, from
where one deduces that the isometry group of R

2
�A R with its canonical metric is

four-dimensional (see the proof of Theorem 2.14 for details), a contradiction. Hence
the principal Ricci curvatures of X are distinct.

Let φ ∈ Stab+
p
− {1X}. Since the principal Ricci curvatures of X are pairwise

distinct, then φ maps each principal Ricci curvature direction Ei into itself (up
to sign) and φ has order two. As an endomorphism of g, the differential φ∗ of φ
must have eigenvalues 1 and −1, with −1 of multiplicity two since φ is orientation-
preserving. In particular, the set of fixed points of φ is a geodesic passing through
p which is an integral curve of one of the vector fields E1, E2, E3. If φ∗(E1) = E1,
then ∇E1E1 = 0. By equations (2.11) and (2.19), this implies 1 + a = 0. But in
the representation of A given in (2.19) we had a ≥ 0, which gives a contradiction.
A similar argument in the case φ∗(E2) = E2 shows 1− a = 0, but we have already
excluded the value a = 1 for a. Hence, φ satisfies φ∗(E3) = E3 and φ∗(Ei) = −Ei,
i = 1, 2. After left translating p to e, to prove item (4) it suffices to check that
φ(x, y, z) = (−x,−y, z). This follows from the usual uniqueness result of local
isometries in terms of their value and differential at a given point. This completes
the proof of the proposition. �

Definition 2.22. We will say that a non-trivial isometry of a three-dimensional
metric Lie group X is a reflectional symmetry if its fixed point set contains a
component which is a surface.

Our next goal is to characterize which simply-connected, three-dimensional
metric Lie groups admit a reflectional symmetry (apart from the trivial case of six
dimensional isometry group) or more generally, which ones admit an orientation-
reversing isometry. Closely related to this problem is to know which of these metric
Lie groups admit a two-dimensional subgroup which is totally geodesic. A partic-
ularly interesting example in this situation is the Lie group �SL(2, R) with some
special left invariant metrics, which we next study in some detail.

Example 2.23. Consider the simply-connected, unimodular Lie group �SL(2, R).
As explained in Section 2.6, any left invariant metric g on X is determined by the
structure constants c1, c2, c3 appearing in (2.24). In our case of X, two of the struc-
ture constants of X can be assumed to be positive and the third one is negative.
We can order these structure constants so that c1 < 0 < c2 < c3 (we could have
scaled the left invariant metric g so that one of these constants has absolute value
1, but we will not do it in order to keep symmetry of the notation). By (2.25), µ1 is
clearly positive while µ3 is negative. We will consider the case µ2 = 0. Therefore,

c2 = c1 + c3 > 0, µ1 = c3, µ3 = c1.

Consider the equation

(2.34) tan2 θ = −c1/c3,

5With respect to the canonical metric on R
2

�A R.
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which has two solutions θ0,−θ0 ∈ (−π, π) (note that θ depends on the structure
constants and thus it depends on the left invariant metric on �SL(2, R), but it is
independent of a rescaling of the metric). For each of these values of θ, we define
the left invariant vector field

X = cos θ E3 + sin θ E1

(here E1, E2, E3 is a positively oriented g-orthonormal basis of the Lie algebra
g = sl(2, R) of �SL(2, R) given by (2.24), with associated structure constants c1, c2 =
c1 + c3, c3). We claim that the two-dimensional linear subspace Πθ = Span{E2, X}
of TeX is a subalgebra of sl(2, R) and that the corresponding two-dimensional
subgroup Σθ = exp(Πθ) of �SL(2, R) is totally geodesic. To see this, first note that

[E2, X] = cos θ[E2, E3] + sin θ[E2, E1] = c1 cos θE1 − c3 sin θE3 = λX,

where λ = c1 cot θ
(2.34)
= −c3 tan θ �= 0. Therefore, Πθ is closed under Lie bracket

and it defines under exponentiation an H
2-type subgroup Σθ of �SL(2, R). Clearly

the unit length vector field N = E2 ×X = cos θ E1 − sin θ E3 ∈ sl(2, R) is normal
to Σθ. Thus, the Weingarten operator of Σθ is determined by

∇E2N = cos θ∇E2E1 − sin θ∇E2E3
(2.26)
= −µ2 cos θE2 − µ2 sin θE1 = 0,

∇XN = cos2 θ∇E3E1 − sin2 θ∇E1E3 = (µ3 cos2 θ + µ1 sin2 θ)E2

= (c1 cos2 θ + c3 sin2 θ)E2
(2.34)
= 0,

from where we deduce that Σθ is totally geodesic. The group Σθ depends on
θ = θ(−c1

c3
) ∈ (0, π), and −c1/c3 also parametrizes (up to homothety) the left

invariant metric.
Next we prove that none of these subgroups Σθ defines a reflective symmetry

φ of �SL(2, R) with the corresponding left invariant metric6. Arguing by contra-
diction, suppose that φ exists. First note that if F is the Killing vector field on
�SL(2, R) determined by Fe = Ne, then φ∗(F ) is again Killing and thus φ∗(F )
is right invariant. Therefore, φ∗(F ) is determined by its value at e, and since
[φ∗(F )]e = dφe(Fe) = dφe(Ne) = −Ne = −Fe, then we conclude that φ∗(F ) = −F

(globally on �SL(2, R)). In particular, if p ∈ Σθ ⊂ Fix(φ), then dφp(Fp) = −Fp.
Since the eigenspace associated to the eigenvalue −1 of dφp is generated by Np,
then we deduce that Fp, Np are collinear for every p ∈ Σθ (the same arguments
can be applied to any n-dimensional metric Lie group with n-dimensional isometry
group and a orientation-reversing isometry whose fix point set is a hypersurface).
This is impossible in our setting, as we next demonstrate. Clearly it suffices to
prove this property downstairs, i.e., in SL(2, R). Then the right invariant vector
field F is given by FA = Fe ·A = Ne ·A for all A ∈ SL(2, R) while the left invariant
vector field N satisfies NA = A ·Ne for all A ∈ Sl(2, R). We now compute Ne and
exp(Πθ) ⊂ SL(2, R) explicitly.

6Interestingly, when the parameter c1 < 0 degenerates to 0, then the corresponding metric
Lie groups converge to �E(2) with its flat metric; the other “degenerate limit” of these left invariant

metrics on �SL(2, R) occurs when c2 > 0 converges to 0, in which case we get the standard metric
on Sol3. In both cases, the totally geodesic subgroups Σθ, Σ−θ limit to related totally geodesic

2-dimensional subgroups of either �E(2) or Sol3, and these limiting totally geodesic 2-dimensional
subgroups are the fixed point set of reflectional isometries of these metric Lie groups.
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First observe that

E1 =
√

c2c3

2

�
0 −1
1 0

�
, E2 =

√
−c1c3

2

�
1 0
0 −1

�
, E3 =

√
−c1c2

2

�
0 1
1 0

�

is the orthonormal basis of sl(2, R) we have been working with. To check this, note
that E1, E2, E3 are multiples of the matrices appearing in (2.29), so we just need
to check the Lie brackets give the desired structure constants c1, c2, c3. This is a
direct computation that only uses (2.29). Thus,

Ne = cos θ

√
c2c3

2

�
0 −1
1 0

�
− sin θ

√
−c1c2

2

�
0 1
1 0

�
.

Using (2.34) one has cos θ =
�

c3
c3−c1

, sin θ =
�

−c1
c3−c1

, hence

(2.35) Ne =
1
2

�
c3 + c1

c3 − c1

�
0 c1 − c3

c1 + c3 0

�
.

Now we compute the subgroup exp(Πθ) ⊂ SL(2, R). Given λ, δ ∈ R,

λE2 + δX =
√
−c1c3

2

�
λ

�
1 0
0 −1

�
+ δ

�
c1 + c3

c3 − c1

�
0 0
2 0

��
,

which after exponentiation gives

exp(Πθ) =




A(λ, δ) =



 e
√
−c1c3

2 λ 0

2 δ

λ

�
c1+c3
c3−c1

sinh
�√

−c1c3
2 λ

�
e−

√
−c1c3

2 λ



 : λ, δ ∈ R






The mapping (λ, δ) �→ A(λ, δ) is injective, hence exp(Πθ) is topologically a plane
in SL(2, R), and it lifts to countably many copies on �SL(2, R), exactly one of which
passes through the origin (this is the subgroup Σθ).

Finally, one easily checks that the a11-element of the matrix A(λ, δ) ·Ne is zero
for all λ, δ ∈ R, while the a11-element of Ne ·A(λ, δ) is

−(c1 + c3)
δ

λ
sinh

�√
−c1c3

2
λ

�
,

which can only vanish if δ = 0. This clearly implies that Ne · A(λ, δ), A(λ, δ) ·Ne

cannot be collinear everywhere in exp(Πθ), and thus the reflectional symmetry of
�SL(2, R) fixing Σθ does not exist (similarly for Σ−θ).

Proposition 2.24. Let X be a simply-connected, three-dimensional metric

Lie group with a three or four-dimensional isometry group. If φ : X → X is a

orientation-reversing isometry, then:

(1) X admits a reflectional symmetry.

(2) If X has a four-dimensional isometry group, then X is isomorphic to

H
2 × R and after scaling, the left invariant metric on X is isometric to

the standard product metric with constant curvature −1 on H
2×R. In this

case, φ is either a reflectional symmetry with respect to a vertical plane
7

or it is the composition of a reflectional symmetry with respect to some

level set H
2 × {t} with a rotation around a vertical line.

7A vertical plane in H
2 × R is the cartesian product γ × R of some geodesic γ in H

2 with
R, and the reflectional symmetry is the product of the geodesic reflection in H

2 with respect to γ

with the identity map in R.
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(3) If X has a three-dimensional isometry group, then, after scaling, X is

isomorphic and isometric to R
2

�A R with its canonical metric, where

(2.36) A(b) =
�

1 0
0 b

�
,

for some unique b ∈ R− {1}. Furthermore,

(a) If b �= −1 (i.e., X is not isomorphic to Sol3), then φ is conjugate

by a left translation to one of the reflectional symmetries (x, y, z) �→
(−x, y, z) or (x, y, z) �→ (x,−y, z).

(b) If b = −1, then φ is conjugate by a left translation to one of the

reflectional symmetries (x, y, z) �→ (−x, y, z), (x, y, z) �→ (x,−y, z)
or φ is one of the isometries (x, y, z) �→ (y,−x,−z) or (x, y, z) �→
(−y, x,−z).

Proof. Since (l(φ(e)−1) ◦φ)(e) = e and left translation by φ(e)−1 is orientation
preserving, without loss of generality we may assume that the orientation-reversing
isometry φ : X → X fixes the origin e of X. We divide the proof in four cases.

Case I-A: Suppose X is non-unimodular with four-dimensional isometry group.
By Theorem 2.14, X is isomorphic to H

2 × R and, after rescaling the metric, X is
isometric to R

2
�A R with its canonical metric, where

A =
�

2 0
2b 0

�
.

We claim that b = 0 from where item (2) of the proposition follows directly. First
note that since the matrix A is written in the form (2.19) with a = 1, then the
vector field E2 = ∂y is a principal Ricci curvature direction and Ric(E2) is different
from Ric(E1) = Ric(E3) (here E1, E2, E3 is the left invariant basis given by (2.6)),
from where one has φ∗(E2) = ±E2. After possibly composing φ with a rotation
by angle π around the z-axis (which is an orientation-preserving isometry of the
canonical metric, see the comment just after equation (2.12)), we may assume that
φ∗(E2) = E2, and so the differential dφe is a reflection with respect to a two-
dimensional linear subspace Π of TeX which contains (E2)e.

Let Fix(φ) ⊂ X be the fixed point set of φ. Since φ is an isometry, then Fix(φ)
is a (possibly non-connected) totally geodesic submanifold of X. The chain rule
clearly implies that the tangent space TeFix(φ) is contained in Π. We claim that
TeFix(φ) = Π; to see this, take a vector v ∈ Π and let Γv be the geodesic of X
with initial conditions Γv(0) = e, Γ�

v
(0) = v. Since the isometry φ satisfies φ(e) = e

and dφe(v) = v, then φ(Γv) = Γv and Γv is contained in Fix(φ). As this occurs for
every v ∈ Π, then TeFix(φ) = Π as desired. Since (2.11) gives ∇E2E2 = 0 (here ∇
is the Levi-Civita connection in X), then the 1-parameter subgroup Γ associated
to E2 is a geodesic of X and thus, Γ is contained in Fix(φ). Since X is isometric
to an E(κ, τ)-space with E2 playing the role of the vertical direction (kernel of the
Riemannian submersion), then there exist rotational isometries of X about Γ of any
angle. Composing φ with a rotation by a suitable angle about Γ we may assume E3

is tangent at e to Fix(φ). Since Fix(φ) is totally geodesic, then ∇(E3)e
E2 is tangent

to Fix(φ). Using again (2.11) we now deduce that b = 0, as desired.

Case I-B: Suppose that X is unimodular with four-dimensional isometry
group.
After scaling, X is isomorphic and isometric to either SU(2), Nil3 or �SL(2, R) with
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an E(κ, τ)-metric. The same argument as in the previous paragraph works by ex-
changing E2 by the left invariant, unit length vertical field E which is a principal
Ricci curvature direction corresponding to the multiplicity one Ricci principal cur-
vature, and using the well-known formula ∇vE = τv×E, where τ is the bundle cur-
vature. Note that τ = 0 leads to a contradiction since in this case E(κ, 0) = H

2×R

which cannot be endowed with a unimodular Lie group structure. Item (2) now
follows.

Case II-A: Suppose that X is unimodular with three-dimensional isometry
group.
Pick an orientation for X and let E1, E2, E3 be an orthonormal basis of the Lie
algebra g of X such that (2.24) holds, for certain structure constants c1, c2, c3 ∈ R.
Recall that the basis E1, E2, E3 diagonalizes the Ricci tensor of X, with principal
Ricci curvatures given by (2.27). Since the isometry group of X is not six dimen-
sional, then there exists a principal Ricci curvature which is different from the other
two. Let i ∈ {1, 2, 3} be the index so that Ei is the principal Ricci direction whose
associated principal Ricci curvature is simple. As φ is an isometry and φ(e) = e,
then φ∗(Ei) = ±Ei.

We claim that we can assume φ∗(Ei) = Ei: Assume φ∗(Ei) = −Ei. Pick
an index j ∈ {1, 2, 3} − {i}. By item (1) of Proposition 2.21 (see also its proof),
X admits an orientation-preserving, order two isometry ψj which fixes e, whose
differential at e fixes (Ej)e and such that ψj induces a well-defined automorphism
of g. Then ψj ◦ φ is an orientation-preserving isometry, it fixes e, its differential at
e fixes (Ei)e and (ψj ◦ φ)∗(Ei) = (ψj)∗φ∗(Ei) = (ψj)∗(−Ei) = Ei, from where our
claim holds.

Since dφe fixes (Ei)e, then dφe leaves invariant Span{(Ej)e, (Ek)e}, where
i, j, k is a cyclic permutation of 1, 2, 3. Furthermore the restriction of dφe to
Span{(Ej)e, (Ek)e} is a linear isometry with determinant −1, hence a symmetry
with respect to a line L = Span{Xe} for certain unitary left invariant vector field
X ∈ Span{Ej , Ek} ⊂ g. Thus dφe : TeX → TeX is the linear reflection with respect
to the two-dimensional subspace Π = Span{(Ei)e, Xe} of TeX. By Proposition 2.18,
the component Fix0(φ) of the set of fixed points of φ which passes through e is a
subgroup and a totally geodesic submanifold of X. Furthermore, TeFix0(φ) = Π.

Clearly we can write X = cos θEj + sin θEk for certain θ ∈ [0, π/2]. Since
Ei×X is a unit normal vector field along the totally geodesic submanifold Fix0(φ),
then

0 = ∇Ei(Ei ×X) = cos θ∇EiEk − sin θ∇EiEj

(2.26)
= −µi cos θ Ej − µi sin θ Ek,

from where we deduce that

(2.37) µi = 0.

Arguing analogously,

0 = ∇X(Ei ×X) = cos θ∇XEk − sin θ∇XEj

(2.26)
= (µj cos2 θ + µk sin2 θ) Ei,

which implies that

(2.38) µj cos2 θ + µk sin2 θ = 0.

Note that θ �= 0, π

2 (otherwise µj or µk vanish, which is impossible by (2.37) since
two of the constants µ1, µ2, µ3 being equal implies that two of the constants c1, c2, c3

are equal, which in turns implies that the isometry group of X is at least four
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dimensional). In particular, (2.38) implies that the constants µ1, µ2, µ3 of X are
one positive, one negative and one zero. This rules out the possibility of X being
isomorphic to either SU(2) or �E(2) (both cases have two of the constants µ1, µ2, µ3

positive). In summary, we have deduced that the Lie group X is isomorphic either
to Sol3 or to �Sl(2, R). Next we will study both cases separately.

Suppose X is isomorphic to Sol3. Then one of the constants c1, c2, c3 in (2.24)
is zero, other is negative and the last one is positive. Since µi = 0 then ci = cj +ck,
which implies that ci = 0 and cj = −ck. After rescaling the metric, we can assume
cj = 1 and the corresponding left invariant metric on Sol3 is the standard one, i.e.,
the one for which the left invariant basis in (2.32) is orthonormal. The isometry
group of Sol3 with the standard metric is well-known: in the usual coordinates

(x, y, z) for the semidirect product R
2

�A R with A =
�
−1 0
0 1

�
, the connected

component of the identity is generated by the following three families of isometries:

(x, y, z) �→ (x + t, y, z), (x, y, z) �→ (x, y + t, z), (x, y, z) �→ (e−tx, ety, z + t),

and the stabilizer of the origin is a dihedral group D4 generated by the following
two orientation-reversing isometries:

(x, y, z) σ�→ (y,−x,−z), (x, y, z) τ�→ (−x, y, z).

Here, σ has order four and τ is a reflective symmetry (order two) with respect to
the totally geodesic plane {x = 0}. Note that σ2 ◦ τ is another reflective symmetry,
now with respect to the totally geodesic plane {y = 0}.

Next assume that X is isomorphic to �Sl(2, R). Hence, two of the structure
constants of X are positive and the third one is negative. We can order these
structure constants so that c1 < 0 < c2 < c3. Now equations (2.37) and (2.38) lead
to the special situation studied in Example 2.23 (compare with equation (2.34)
and note that with the notation in that example, i = 2, j = 3 and k = 1). We
can discard this case since the corresponding totally geodesic subgroup Fix0(φ)
coincides with Σθ given in Example 2.23, which does not give rise to a reflectional
symmetry of �Sl(2, R).

Case II-B: Suppose that X is non-unimodular with three-dimensional isometry
group.
Since X is non-unimodular, then X = R

2
�A R with A as in (2.19) with a, b ≥ 0 and

we have the related natural basis E1, E2, E3 of principal Ricci curvature directions.
Our assumption that the isometry group of X is three-dimensional implies that
a /∈ {0, 1} (recall that if a = 0 then the canonical metric on R

2
�A R has constant

sectional curvature, while if a = 1 then the isometry group of R
2

�A R with its
canonical metric is four dimensional, see Theorem 2.14). It follows that the principal
Ricci curvature values given by equation (2.23) are distinct, and so φ∗(Ei) = ±Ei

for i = 1, 2, 3. Thus φ has order two and, after possibly composing φ with the
rotation by angle π around the z-axis, X admits an orientation-reversing isometry
τ with τ∗(E1) = E1 and τ∗(Ei) = ±Ei for i = 1, 2.

We claim that τ∗(E3) = E3. Otherwise, τ∗(E3) = −E3 and one easily finds
that the fixed point set of τ is R

2
�A {0} (use again the uniqueness of geodesics

with given initial conditions to show that every geodesic γ of X with γ(0) = e
and γ�(0) ∈ Span{(E1)e, (E2)e} is contained in the fixed point set of τ , where
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e = (0, 0, 0) ∈ X), which is totally geodesic and has E3 as its unit normal field. This
case is easily seen to be impossible by the formulas in (2.11). Hence, τ∗(E3) = E3.

Since τ∗(E1) = E1 and τ∗(E3) = E3, then τ∗(E2) = −E2. The same arguments
as before give that E1 and E3 are tangent to the totally geodesic fixed point set of
τ (thus τ is a reflectional symmetry). Therefore [E3, E1] is a linear combination of
E3 and E1, which after scaling again the metric, implies [E3, E1] = E1. Then we
can use (2.9) to compute the first column of A. After composing the reflectional
symmetry τ with the rotation by angle π around the z-axis, we obtain another
reflectional symmetry σ with σ∗(E1) = −E1 and σ∗(Ei) = Ei for i = 2, 3, from
which we conclude by the arguments in the previous sentence that [E3, E1] = bE2

for some b ∈ R. Now (2.10) gives the second column of the matrix A, or equivalently,
the matrix for adE3 restricted to the unimodular kernel Span{E1, E2} is

A =
�

1 0
0 b

�
.

Note that τ corresponds to the reflection (x, y, z) �→ (x,−y, z) and σ corresponds
to the reflection (x, y, z) �→ (−x, y, z). From here the statement in item (3-a) of
Proposition 2.24 is straightforward, and the proof is complete. �

Remark 2.25. Let X be a simply-connected, three-dimensional metric Lie
group with six-dimensional isometry group I(X).

(1) If the sectional curvature of X is positive, then X is isomorphic to SU(2)
and X embeds isometrically in R

4 as a round sphere centered at the origin.
In this case, I(X) can be identified with the group O(4).

(2) If the sectional curvature of X is zero, then I(X) can be identified with
the group of rigid motions of R

3 with its usual flat metric. Clearly I(X)
is isomorphic to the semidirect product R

3
�ϕ O(3), where ϕ : O(3) →

Aut(R3) is the group morphism given by matrix multiplication.
(3) If the sectional curvature of X is negative, then, after scaling, X is isomet-

ric to the hyperbolic three-space H
3 with its standard metric of constant

curvature −1. Thus, I(X) is just the group of isometries of H
3, which

can be identified with the group of conformal diffeomorphisms of the unit
sphere S

2 ⊂ R
3, whose elements (after stereographic projection ) are the

holomorphic and antiholomorphic Möbius transformations:

z �→ az + b

cz + d
, z �→ az + b

cz + d
, z ∈ C ∪ {∞},

where a, b, c, d ∈ C and ad − bc = 1. In this case, the group I(X) is
isomorphic to the semidirect product PSL(2, C)�ϕ Z2, where PSL(2, C) =
SL(2, C)/{±I2}, SL(2, C) = {A ∈ M2(C) | detA = 1} and ϕ : Z2 →

Aut(SL(2, C)) is the group morphism given by ϕ(0) = 1PSL(2,C), ϕ(1) = ϕ1

being the automorphism

ϕ1([A]) = [A], [A] = {±A}, A ∈ SL(2, C).

3. Surface theory in three-dimensional metric Lie groups.

In the sequel we will study surfaces immersed in a simply-connected metric Lie
group X.
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3.1. Algebraic open book decompositions of X.

Definition 3.1. Let X be a simply-connected, three-dimensional Lie group
and Γ ⊂ X a 1-parameter subgroup. An algebraic open book decomposition of X
with binding Γ is a foliation B = {L(θ)}θ∈[0,2π) of X − Γ such that the sets

H(θ) = L(θ) ∪ Γ ∪ L(π + θ)

are two-dimensional subgroups of X, for all θ ∈ [0, π). We will call L(θ) the leaves

and H(θ) the subgroups of the algebraic open book decomposition B.

We now list many examples of algebraic open book decompositions of simply-
connected, three-dimensional Lie groups. Theorem 3.6 at the end of this section
states that this list is complete.

Example 3.2. The cases of R
3 and H

3. The most familiar examples of
algebraic open book decompositions occur when the metric Lie group is X = R

3.
In this case every two-dimensional subgroup of X is a plane in R

3. Clearly each
algebraic open book decomposition of X has as binding a line passing through
the origin and has as subgroups all of the planes containing this line. The set
of algebraic open book decompositions of X = R

3 are parameterized by its 1-
parameter subgroups.

In the case X = H
3 = R

2
�I2 R, equation (2.1) implies that every two-

dimensional subspace of the Lie algebra of R
2

�I2 R is closed under Lie bracket.
It follows that the algebraic open book decompositions of X are parameterized by
their bindings, which are all of the 1-parameter subgroups of X. These 1-parameter
subgroups can be easily proven to be of the form

{(tp0, 0) ∈ R
2

�I2 R | t ∈ R} or
��

1
λ

(eλt − 1)p0, λt

�
| t ∈ R

�
,

where p0 ∈ R
2 and λ ∈ R − {0}. Note that the two-dimensional subgroups of H

3

are not necessarily planes passing through the origin in the above R
3-coordinates,

although they are topological planes.

Example 3.3. The Heisenberg group Nil3. Recall that Nil3 is isomorphic

to R
2

�A R, where A =
�

0 1
0 0

�
. An interesting example of an algebraic open

book decomposition of Nil3 is that one given by considering, for each λ ∈ R, the
two-dimensional abelian subgroup

H(λ) = {(x, y,λy) x, y ∈ R}.
The (commutative) Lie algebra of H(λ) is spanned by E1 and −zE1 + E2 + λE3,
where E1(x, y, z) = ∂x, E2(x, y, z) = z ∂x + ∂y, E3 = ∂z are given by (2.6). We can
extend this definition to λ = ∞ by letting

H(∞) = {(x, 0, z) | x, z ∈ R}.
Clearly for λ �= λ�, the subgroups H(λ), H(λ�) only intersect along the 1-parameter
subgroup Γ = {(x, 0, 0) | x ∈ R}, and the family B = {H(λ) − Γ | λ ∈ R ∪ {∞}}
foliates (R2

�A R)− Γ. Hence, B defines an algebraic open book decomposition of
Nil3 with binding Γ. In the usual representation of Nil3 as an E(κ = 0, τ)-space,
each of the subgroups H(λ) corresponds to a vertical plane, i.e., the preimage under
the Riemannian submersion Π : E(0, τ) → R

2 of a straight line in R
2 that passes

through the origin.
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Example 3.4. Semidirect products R
2

�A R with A ∈M2(R) diagonal.

Consider the semidirect product R
2

�A(b) R, where A(b) =
�

1 0
0 b

�
and b ∈ R.

For b = 0 (resp. b = −1, b = 1), R
2

�A(b) R with its canonical metric is isomorphic
and isometric to H

2×R (resp. to Sol3, H
3) with its standard metric. For b �= ±1, the

Lie groups X = R
2

�A(b) R produce non-unimodular Lie groups whose normalized
D-invariants cover all possible values less than 1. The case of b = 1, which is the
same as X = H

3, was already covered in Example 3.2.
Let E1, E2, E3 the usual basis for the Lie algebra g of R

2
�A(b) R in the sense

of (2.16), (2.17), that is

[E1, E2] = 0, [E3, E1] = E1, [E3, E2] = bE2.

The horizontal distribution spanned by {E1, E2}, generates the normal, commuta-
tive Lie subgroup R

2
�A(b){0} of R

2
�A(b)R. It is worth while considering interesting

subgroups of type H
2, which together with R

2
�A(b) {0} form an algebraic open

book decomposition:
(1) Suppose b �= 0. Given λ ∈ R, consider the distribution ∆1(λ) generated by

{E1, E3 + λE2} (which is integrable since [E1, E3 + λE2] = −E1). Since
the Lie bracket restricted to ∆1(λ) does not vanish identically, ∆1(λ)
produces an H

2-type subgroup H1(λ) = exp(∆1(λ)) of R
2

�A(b) R. Using
(x, y, z)-coordinates as in Section 2.2, the generators of the tangent bundle
to H1(λ) are {ez∂x, λebz∂y + ∂z}. From here we deduce that

H1(λ) =
��

x,
λ

b
(ebz − 1), z

�
| x, z ∈ R

�
.

We can extend the above definition to λ = ∞, letting H1(∞) = R
2

�A(b)

{0}. Clearly for λ �= λ�, the subgroups H1(λ), H1(λ�) only intersect along
the 1-parameter subgroup Γ1 = {(x, 0, 0) | x ∈ R}, and the family B1 =
{H1(λ)−Γ1 | λ ∈ R∪ {∞}} foliates (R2

�A(b) R)−Γ1. Hence, B1 defines
an algebraic open book decomposition of R

2
�A(b) R with binding Γ1.

In the same Lie group R
2
�A(b) R, we can exchange the roles of E1, E2

and define, given λ ∈ R, the integrable distribution ∆2(λ) generated by
{E2, E3 +λE1}, which produces an H

2-type subgroup of R
2
�A(b) R when

b �= 0 and an R
2-type subgroup when b = 0:

H2(λ) = exp(∆2(λ)) = {(λ(ez − 1), y, z) | y, z ∈ R} .

Letting H2(∞) = R
2

�A(b) {0} and Γ2 = {(0, y, 0) | y ∈ R}, we have that
B2 = {H2(λ)−Γ2 | λ ∈ R∪{∞}} is an algebraic open book decomposition
of R

2
�A(b) R with binding Γ2.

Note that in the usual (x, y, z)-coordinates, the leaves of the algebraic
open book decomposition B1 (resp. B2) are products with the x-factor
(resp. with the y-factor) of the exponential graphs z ∈ R �→ (0, λ

b
(ebz −

1), z) (resp. z �→ (λ(ez − 1), 0, z)) except for λ = ∞. Furthermore,
Hi(λ) with λ = 0,∞ and i = 1, 2 are the only subgroups of the algebraic
open book decompositions B1,B2 that are genuine planes in these (x, y, z)-
coordinates.

(2) Now assume b = 0. We will follow the arguments in case (1) above,
focusing only on the differences. Given λ ∈ R, the distribution ∆1(λ) =
Span{E1, E3 + λE2} is again integrable and non-commutative, defining
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an H
2-type subgroup H1(λ) = exp(∆1(λ)) of R

2
�A(b) R, which can be

written in (x, y, z)-coordinates as

H1(λ) = {(x,λz, z) | x, z ∈ R} .

Defining H1(∞) = R
2

�A(b) {0} and B1 = {H1(λ) − Γ1 | λ ∈ R ∪ {∞}},
we have that B1 is an algebraic open book decomposition of R

2
�A(0) R ∼=

H
2 × R with binding Γ1 = {(x, 0, 0) | x ∈ R}. Note that the leaves of B1

are now planes in the coordinates (x, y, z). Also note that (2.12) implies
that the canonical metric on R

2
�A(0) R is

�, � = (e−2zdx2 + dz2) + dy2 = ds2
H2 + dy2,

where ds2
H2 stands for the standard hyperbolic metric with constant cur-

vature −1 in the (x, z)-plane. The R-factor in H
2 × R corresponds to

the y-axis in R
2

�A(0) R (obviously we could exchange y by z in this
discussion).

Given λ ∈ R, consider the integrable distribution ∆2(λ) = Span{E2,
E3 + λE1}, which is commutative and generates the R

2-type subgroup

H2(λ) = exp(∆2(λ)) = {(λ(ez − 1), y, z) | y, z ∈ R}
of R

2
�A(b) R. Together with H2(∞) = R

2
�A(0) {0}, we can consider the

algebraic open book decomposition B2 = {H2(λ) − Γ2 | λ ∈ R ∪ {∞}}
of R

2
�A(0) R with binding Γ2 = {(0, y, 0) | y ∈ R}. In the standard

(x, y, z)-coordinates, the leaves of B2 are products with the y-factor of
the exponential graphs z ∈ R �→ (λ(ez − 1), 0, z), except for λ = ∞.
H2(0), H2(∞) are the only subgroups of B2 which are genuine planes in
these (x, y, z)-coordinates. In the model H

2 × R for R
2

�A(0) R, the al-
gebraic open book decomposition B2 corresponds to the pencil of totally
geodesic planes {γ ×R | γ ∈ C}, where C is the collection of geodesics of
H

2 based at a given point.

Example 3.5. The three-dimensional simply-connected Lie group X
with D-invariant D = 1 which is not isomorphic to H

3. Recall that this
Lie group X can be expressed as the semidirect product R

2
�A R, where A =�

1 0
1 1

�
. We define, given λ ∈ R, the integrable distribution ∆(λ) generated

by {E2, E3 + λE1}, which produces the H
2-type subgroup H(λ) = exp(∆(λ)) of

R
2

�A R given by

H(λ) = {(λ(ez − 1), y + λ [ez(z − 1) + 1] , z) | y, z ∈ R} .

Defining H(∞) = R
2

�A {0} and Γ = {(0, y, 0) | y ∈ R}, then we have that
B = {H(λ)−Γ | λ ∈ R∪{∞}} is an algebraic open book decomposition of R

2
�A R

with binding Γ.

The next theorem classifies all two-dimensional subgroups and all algebraic
open book decompositions of a three-dimensional simply-connected Lie group. In
particular, it shows that the algebraic open book decompositions are precisely the
ones described in the above examples. Since the proof of the following result requires
the notions of left invariant Gauss map and H-potential which will be explained in
Sections 3.2 and 3.3 below, we postpone its proof to Section 3.4.

Theorem 3.6. Let X be a three-dimensional simply-connected Lie group. Then:
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(1) If X = SU(2), then X has no two-dimensional subgroups.

(2) If X = �SL(2, R), then its connected two-dimensional subgroups are the

lifts to �SL(2, R) of the subgroups H
2
θ

described in (2.30). In particular,

since the intersection of any three distinct such subgroups of �SL(2, R) is

the trivial subgroup, then �SL(2, R) does not admit any algebraic open book

decompositions.

(3) If X = �E(2) expressed as a semidirect product R
2

�A R for some matrix

A ∈M2(R), then X has no two-dimensional subgroups other than R
2

�A

{0}.
(4) If X = R

2
�A R is a non-unimodular group with D-invariant D > 1 (here

A ∈ M2(R) is some matrix), then X has no two-dimensional subgroups

other than R
2

�A {0}.
(5) Suppose X is not in one of the cases 1, 2, 3, 4 above. Then X admits an

algebraic open book decomposition and every such decomposition is listed in

one of the examples above. Furthermore, every two-dimensional subgroup

of X is a subgroup in one of these algebraic open book decompositions.

(6) If X is unimodular, then every two-dimensional subgroup of X is minimal.

(7) Suppose that X = R
2
�A R is non-unimodular with trace(A) = 2 and let T

be a two-dimensional subgroup. Then the mean curvature H of T satisfies

H ∈ [0, 1]. Furthermore:

(a) If D = det(A) > 1, then T = R
2

�A {0}, and so the mean curvature

of T is 1.
(b) If D = det(A) ≤ 1, then for each H ∈ [0, 1], there exists a two-

dimensional subgroup T (H) with mean curvature H.

Theorem 3.11 of the next section will illustrate the usefulness of having alge-
braic open book decompositions.

Recall that in Section 2.1 we constrained the study of three-dimensional semidi-
rect products H �ϕ R (here ϕ : R → Aut(H) is a group homomorphism) to the case
of H being commutative, except in the case H = H

2 and ϕ(z) = 1H , which pro-
duces H

2
� R. With Theorem 3.6 in hand, we can give the following justification

of our constraint. Note that for arbitrary ϕ, the subgroup H �ϕ {0} of H �ϕ R is
always normal.

Corollary 3.7. Suppose that X is a simply-connected three-dimensional Lie

group which admits a non-commutative, two-dimensional normal subgroup H. Then,

X is isomorphic to H
2 × R and after representing X as the semidirect product

R
2

�A R with A =
�

1 0
0 0

�
, then H is one of the subgroups H1(λ), λ ∈ R, of the

algebraic open book decomposition B1 given in Example 3.4 (2).

Proof. Let g (resp. h) be the Lie algebra of X (resp. of H). It is an elementary
exercise to prove that H is a normal subgroup of X if and only if h is an ideal of g.

We will work up to isomorphism. By Theorem 3.6 X cannot be SU(2), and if
X = �SL(2, R) then H is the lift to �SL(2, R) of one of the subgroups H

2
θ

described
in (2.30), which is clearly not normal in �SL(2, R) (its conjugate subgroups are the
liftings of H

2
θ� with θ� varying in ∂∞H

2). Hence we can assume X is a semidirect
product R

2
�A R for some matrix A ∈M2(R). In particular, there exists a basis

E1, E2, E3 such that [E1, E2] = 0. If h is generated by X = αE1 + βE2 + γE3 and
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Y = α�E1 + β�E2 + γ�E3 ∈ g, then

(3.1) [X,Y ] =
����

α γ
α� γ�

���� [E1, E3] +
����

β γ
β� γ�

���� [E2, E3].

Since h is an ideal of g, then [X,E1] ∈ h and so

(3.2) 0 = det([X,E1], X, Y ) = γ det([E3, E1], X, Y ),

where det denotes the determinant 3-form associated to a previously chosen orien-
tation on g. Analogously,

(3.3) γ� det([E3, E1], X, Y ) = γ det([E3, E2], X, Y ) = γ� det([E3, E2], X, Y ) = 0.

Note that (γ, γ�) �= (0, 0) (otherwise h would be commutative, a contradiction).
Thus (3.2) and (3.2) imply that

(3.4) [E3, E1], [E3, E2] ∈ h.

If det(A) �= 0 then (2.9) and (2.10) imply that [E3, E1], [E3, E2] are linearly inde-
pendent, hence (3.4) allows us to choose X as [E3, E1] and Y as [E3, E2]. This
gives (γ, γ�) = (0, 0), which we have checked is impossible. Thus, det(A) = 0.

Note that A is not a multiple of the identity (otherwise A = 0 and X =
R

3, which is commutative). We claim that X is non-unimodular. Arguing by
contradiction, if X is unimodular then necessarily X = Nil3 (the cases X = Sol3
and X = �E(2) are discarded since both have related matrix A which is regular).

Thus A =
�

0 1
0 0

�
and thus, E1 = [E3, E2] ∈ h can be chosen as X in (3.1)

(in particular, β = γ = 0). Now (3.1) gives [X,Y ] = [E1, Y ] = 0, i.e., h is
commutative, a contradiction. Thus X is non-unimodular, from where the D-
invariant D = det(A) = 0 is a complete invariant of the group structure of X. This
implies that X is isomorphic to H

2
� R.

Finally, represent X by R
2

�A R where A =
�

1 0
0 0

�
. Then (2.9) and

(3.4) give E1 = [E3, E1] ∈ h, which means that X can be chosen as E1 and
h = Span{E1, Y } = Span{E1, α�E1 + β�E2 + γ�E3} = Span{E1, β�E2 + γ�E3} =
Span{E1, λE2+E3}, where λ = β�/γ� (note that γ� �= 0 since −γ�E1 = γ�[E1, E3] =
[E1, β�E2 + γ�E3] �= 0 because h is non-commutative). Now the proof is com-
plete. �

Corollary 3.8. Suppose that X is a simply-connected three-dimensional Lie

group which admits a commutative, two-dimensional normal subgroup H = R
2
.

Then, X is isomorphic to (H = R
2) �A R, for some A ∈M2(R).

Furthermore, if X admits a second R
2
-type subgroup, then:

(1) X is isomorphic to R
3
, Nil3 or H

2 × R.

(2) Every R
2
-type subgroup in R

3
, Nil3 or H

2 × R is normal.

In particular, by Theorem 3.6 and Corollary 3.7, every two-dimensional subgroup

of R
3
, Nil3 or H

2 × R is normal and these groups are the only simply-connected

three-dimensional Lie groups which admit more than one normal two-dimensional

subgroup.

Proof. Note that the R
2-type subgroups of any of the groups R

3, Nil3 or
H

2 × R are normal. To see this property it suffices to check that the Lie subalge-
bras of their R

2-type subgroups described by Theorem 3.6 are ideals, which is a
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straightforward calculation. With this normal subgroup property proved, the proofs
of the remaining statements of the corollary are straightforward and the details are
left to the reader. �

3.2. The left invariant Gauss map and the embeddedness of certain
spheres in X. Given an oriented surface Σ immersed in a metric Lie group X,
denote by N : Σ → TX the unit normal vector field to Σ (TX stands for the tangent
bundle to X). Given any point p ∈ Σ, we extend the vector Np ∈ TpX to a (unique)
left invariant vector field G(p) ∈ g, i.e., G(p)|p = Np. This is equivalent to

G(p) =
3�

i=1

�Np, (Ei)p�Ei,

where E1, E2, E3 is an orthonormal basis of the Lie algebra g of X. We will call
G : Σ → g the left invariant Gauss map of Σ. Clearly, G takes values in the unit
sphere of the metric Lie algebra g ≡ R

3.
The definition of left invariant Gauss map makes sense for any hypersurface in

a metric Lie group, not just in the case where the Lie group has dimension three.
The next lemma describes some useful elementary facts about hypersurfaces in a
metric Lie group with constant left invariant Gauss map, which we will apply later
on to study H-spheres in a three-dimensional metric Lie group which admits an
algebraic open book decomposition.

Lemma 3.9.
(1) A connected oriented hypersurface in an (n + 1)-dimensional metric Lie

group has constant left invariant Gauss map if and only if it is a left coset

of some n-dimensional subgroup.

(2) If Σ is a connected, codimension one subgroup in a metric Lie group X,

then each component Y of the set of points at any fixed constant distance

from Σ is a right coset of Σ. For any y ∈ Y , Y is also the left coset yH
of the codimension one subgroup H = y−1Σy of X.

(3) If Σ is a connected oriented hypersurface of X with constant left invariant

Gauss map, then each component of the set of points at any fixed constant

distance from Σ is a left coset of some codimension one subgroup ∆ of X
and a right coset of some conjugate subgroup of ∆.

Proof. Let X be an n-dimensional metric Lie group. Since a connected n-
dimensional subgroup Σ in X is closed under multiplication by elements in Σ, then
Σ is orientable, and after choosing an orientation, its left invariant Gauss map is
clearly constant. Since the left invariant Gauss map of a left coset of Σ coincides
with that of Σ, we have the desired constancy of the left invariant Gauss map of
every left coset of Σ.

Reciprocally, suppose Σ is an oriented hypersurface in an (n + 1)-dimensional
metric Lie group X, whose left invariant Gauss map is constant. Let e be the iden-
tity element of X. After left translation, we can assume e belongs to Σ. Consider
the unit normal Ne ∈ TeX of Σ at e. Let N ∈ g be the left invariant vector field
corresponding to Ne. Note that N can be viewed as the left invariant Gauss map of
Σ at every point. Let N⊥ denote the distribution orthogonal to N . We claim that
the distribution N⊥ is integrable, and that the integral leaf of N⊥ passing through
e is Σ. Let γN (R) be the associated 1-parameter subgroup. For ε > 0 sufficiently
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small, the surfaces {γN (t)BΣ(e, ε) | t ∈ (−ε, ε)} obtained by translating the intrin-
sic disk BΣ(e, ε) ⊂ Σ centered at e with radius ε by left multiplication by γN (t),
foliate a small neighborhood of e in X and are tangent to the analytic distribution
N⊥ at every point in this neighborhood. It follows that N⊥ is integrable on all of
X and that Σ is the integral leaf of N⊥ passing through e, which proves the claim.

By construction, for any x ∈ Σ, xΣ and x−1Σ are integral leaves of the dis-
tribution N⊥ and since each of these leaves intersects the integral leaf Σ, we must
have Σ = xΣ = x−1Σ. Elementary group theory now implies Σ is a subgroup of
X, which completes the proof of the first statement in the lemma.

We now prove item 2. Let Σ be a connected codimension one subgroup in a
metric Lie group X. To see that the second statement in the lemma holds, first
observe that a component Y of the set of points at a fixed distance ε > 0 from Σ
is equal to the right coset Σy, for any y ∈ Y . To see this, take an element y ∈ Y
and we will show that Σy = Y . Given x ∈ Σ, clearly Σ = xΣ. Then the left
multiplication by x is an isometry lx of X which leaves Σ invariant. Therefore, lx
leaves invariant the set of points at distance ε. Now a connectedness argument gives
that lx leaves Y invariant. In particular, xy = lx(y) ∈ Y and since x is arbitrary in
Σ, we conclude that Σy ⊂ Y . By the connectedness of Σ, it follows that Σy = Y .
Finally, note that Y = y(y−1Σy), which is a left coset of the subgroup y−1Σy. This
gives the second statement in the lemma.

The proof of item 3 follows directly from items 1 and 2 in the lemma and details
are left to the reader. �

Lemma 3.10 (Transversality Lemma). Let S be an immersed sphere in a simply-

connected metric Lie group X, whose left invariant Gauss map G is a diffeomor-

phism. Let Σ be a two-dimensional subgroup of X. Then:

(1) The set of left cosets {gΣ | g ∈ X} which intersect S can be parametrized

by the interval [0, 1], i.e., {g(t)Σ | t ∈ [0, 1]} are these cosets.

(2) Each of the left cosets g(0)Σ and g(1)Σ intersects S at a single point.

(3) For every t ∈ (0, 1), g(t)Σ intersects S transversely in a connected, im-

mersed closed curve.

Proof. First note that since X admits a two-dimensional subgroup, then X
is not isomorphic to SU(2) and so it is diffeomorphic to R

3. In this case the set of
left cosets {gΣ | g ∈ X} can be smoothly parameterized by R. Let Π : X → R ≡
{gΣ | g ∈ X} be the related smooth quotient map. The critical points of Π|S are
those points of S where the value of the left invariant Gauss map of S coincides (up
to sign) with the one of Σ. Since G is bijective, then Π|S has at most two critical
points. On the other hand, Π|S has at least two critical points: a local maximum
and a local minimum. From here, the proof of each statement in the lemma is
elementary. �

Theorem 3.11 (Meeks-Mira-Pérez-Ros [32]). Let X be a simply-connected,

three-dimensional metric Lie group which admits an algebraic open book decompo-

sition B with binding Γ. Let Π : X → R
2 ≡ X/Γ be the related quotient map to

the space of left cosets of Γ. If f : S � X is an immersion of a sphere whose left

invariant Gauss map is a diffeomorphism, then:

(1) D = Π(f(S)) is a smooth, compact embedded disk in R
2

and Π−1(Int(D))
consists of two components F1, F2 such that Π|Fi : Fi → Int(D) is a diffeo-

morphism and Π|
F 1∩F 2

: F 1 ∩ F 2 → ∂D is a diffeomorphism for i = 1, 2.
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(2) f(S) is an embedded sphere (i.e., f is an injective immersion).

Proof. Arguing by contradiction, assume that the theorem fails. Recall that
X together with a left invariant metric is an analytic Riemannian manifold. Since
the property that left invariant Gauss map of f : S � X is a diffeomorphism is an
open property in the space of smooth immersions of S into X (with varying left
invariant metrics on the target space), then it is straightforward to check that the
theorem also fails for some arbitrarily close analytic approximation to f . Hence,
from this point on in the proof, we will assume that the immersion f is
analytic with analytic image set f(S).

By Theorem 3.6 and the related examples of algebraic open book decompo-
sitions listed in Section 3.1, without loss of generality we may assume that X is
isomorphic to R

2
�A R for some A ∈ M2(R), the binding Γ is the 1-parameter

subgroup8 {(x, 0, 0) | x ∈ R} and P0 = R
2

�A {0} is one of the subgroups of B. For
each z ∈ R, let Pz = R

2
�A {z}. Since the property that the left invariant Gauss

map of f : S � X is a diffeomorphism only depends on the Lie group structure of
X, then we will assume that X is equipped with the canonical metric of R

2
�A R.

After scaling A and left translating f(S), suppose that the sphere f(S) is contained
in the region R

2
�A [0, 1] and intersects each of the planes P0, P1 at single points

p0, p1, respectively.
Let L(θ) be the leaves of B, θ ∈ [0, 2π), and H(θ) = L(θ)∪Γ∪L(π + θ) be the

corresponding subgroups, θ ∈ [0, π). Our first goal consists of demonstrating that
S intersects all left translations of the binding Γ in at most two points (counted
with multiplicity), which is the purpose of the following statement.

Assertion 3.12. For all g ∈ X, the set f−1(gΓ) contains at most two points.

Proof of the Assertion. We proceed by contradiction: suppose that the
assertion fails. Then, for some g ∈ X the cardinality of f−1(gΓ) is at least three.
After left translating f(S) by g−1 (this does not change the left invariant Gauss
map of S), we can assume Γ = gΓ. We claim that by choosing some a ∈ X
arbitrarily close to e, the left translated binding aΓ is in general position with
respect to f(S) and the cardinality of f−1(aΓ) is an even integer greater than or
equal to four. This elementary fact can be seen as follows. Since the (x, y)-plane is
a subgroup H(θ0) of B, the Transversality Lemma 3.10 implies that H(θ0) ∩ f(S)
is a connected, analytic immersed closed curve α of transverse intersection. Recall
that the Transversality Lemma actually implies that f−1(α) is a connected simple
closed curve in S which covers the curve α (considered to be an immersion of S

1)
with fixed integer multiplicity m at least one. The following arguments can be
easily modified to prove the claimed elementary fact if m > 1, and so, henceforth
assume that m = 1. Since α is analytic, the self-intersection set of α is finite. Since
the x-axis Γ ⊂ H(θ0) intersects α in at least three points, then, for t �= 0 sufficiently
small and for a(t) = (0, t, 0) ∈ R

2
�A R, a(t)Γ intersects f(S) transversely in an

even number of points, all of which are disjoint from the self-intersection set of
α, and either f−1(a(t)Γ) or f−1(a(−t)Γ) also contains at least four points. This
completes the proof of the earlier claim.

By the discussion in the previous paragraph, we may assume that Γ is transverse
to f(S) and f−1(Γ) = {p1, . . . , p2n} ⊂ S with n an integer, n ≥ 2. Now consider one

8Note that exchanging the matrix A in Example 3.5 by its transpose, we do not change the Lie
group and the binding Γ = {(0, y, 0) | y ∈ R} in that example changes to Γ� = {(x, 0, 0) | x ∈ R}.
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of the subgroups H(θ) of B. Since H(θ) ∩ f(S) contains Γ ∩ f(S), then f−1(H(θ))
contains at least four points and thus, the Transversality Lemma insures that H(θ)
intersects f(S) transversely in a connected, immersed closed curve.

Now consider the normal variational vector field ∂θ to the leaves of the product
foliation B = {L(θ) | θ ∈ [0, 2π)}, which is defined in X − Γ. Since each leaf
L(θ) intersects S transversely, then the pullback by f of the tangential component
of the restriction of ∂θ to f(S) − Γ, defines a vector field ∂T

θ
on S − f−1(Γ) =

S−{p1, . . . , p2n}, and ∂T

θ
has no zeros on S−f−1(Γ). The fact that the immersion

f is transverse to the binding Γ of B implies that the index of ∂T

θ
at each of the

points pj is +1. Then, by the Hopf index theorem, the Euler characteristic of S
would be 2n ≥ 4, which is false since the Euler characteristic is S is 2. Now the
assertion is proved. �

Recall that we have assumed that Γ = {(x, 0, 0) | x ∈ R}, which we consider
to be oriented by the usual orientation on R. Now orient the sphere S, orient the
planes Pz by E3 = ∂z and the space R

2
�A R by the ordered triple E1, E2, E3

given in (2.6). By Lemma 3.10, each of the oriented planes Pz, z ∈ (0, 1), is
transverse to f and so f−1(Pz) is a smooth, embedded, oriented Jordan curve
αz in S, where the orientation is the homological one arising from the ordered
intersection Pz ∩ f(S). Note that with respect to the induced metric, each plane
Pz is intrinsically flat and each left translate of Γ that intersects Pz corresponds to
a straight line in Pz that is of the form Γy,z = {(x, y, z) | x ∈ R}. In fact each Pz is
foliated by the collection of parallel lines Γy,z = {(x, y, z) | x ∈ R} as y ∈ R varies.
Thus, we can view the quotient map Π : X → X/Γ ≡ R

2 as the natural projection
(x, y, z) ∈ R

2
�A R �→ (y, z) ∈ R

2 in the standard coordinates of R
2

�A R. By
Assertion 3.12, for each z ∈ (0, 1), Π(f(αz)) = Iz is an interval contained in the line
{(0, y, z) | y ∈ R} and the union of these intervals Iz for z ∈ (0, 1) together with the
two points Π(p0),Π(p1) is the compact embedded disk D = Π(f(S)). The interior
of each of the intervals Iz lifts through Π to two connected arcs I1

z
, I2

z
⊂ f(αz)

with common extrema, where the superindices j = 1, 2 are consistently defined as
z varies so that the velocity vector to I1

z
at its starting extremum (resp. ending

extremum) points to the direction of ∂x (resp. of −∂x), see Figure 6. Then for
i = 1, 2 fixed, Fi is the related disk in f(S) corresponding to the union of the arcs
Ii

z
as z varies, thus we have proved that Π−1(Int(D)) decomposes as a disjoint union

of the disks F1, F2 with common boundary ∂F1 = ∂F2, and each Fi is Π-graphical
onto Int(D).

To finish the proof of item (1) in the statement of the theorem, it remains to
show that

(�) Π|∂F1 : ∂F1 → ∂D is a diffeomorphism.
Let N be the unit normal vector field to the immersion and G : S → S

2 ⊂ TeX the
left invariant Gauss map of f . Hence G = (N1, N2, N3) where

N(p) =
3�

i=1

Ni(p)(Ei)f(p)

for each p ∈ S. We will also use the notation ei = (Ei)e at the identity element
e of X. Thus, Γ�(0) = e1. Consider the smooth function h = �G, e1�e : S → R.
Given p ∈ S, h vanishes at p if and only if G(p) is orthogonal to the binding Γ
at e, or equivalently, the left coset f(p)Γ is orthogonal to the tangent plane to the
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Figure 6. Proof of Theorem 3.11; the immersed curve f(αz) =
f(S)∩Pz consists of two Jordan arcs I1

z
, I2

z
with the same extrema.

immersion f at f(p). This implies that ∂F1 = h−1({0}). As 0 is a regular value
of h (otherwise there exists p ∈ ∂F1 such that dhp = 0, which in turn implies
dGp(TpΣ) is orthogonal to e1; since dGp has rank two, then G(p) = ±e1, which
contradicts that dhp = 0), then ∂F1 is a smooth (embedded) curve which can be
parameterized by arclength by γ = γ(t). The failure of (�) to hold implies that
there exists p ∈ ∂F1 such that γ is tangent to a left coset of the binding. Clearly
we can assume γ(0) = p and γ̇(0) = (E1)p, where γ̇ = dγ

dt
. Since the left cosets

of Γ passing through each of the points of ∂F1 are tangent to f(S), then G ◦ γ
is contained in the great circle S

1 ⊂ S
2 ⊂ TeX orthogonal to e1 (in fact, G ◦ γ

parameterizes S
1 bijectively since G is a diffeomorphism). In particular, dGp(γ̇(0))

is orthogonal to e1.
Assume for the moment that p is not a maximum or minimum of the z-

coordinate on f(S). By the transversality Lemma 3.10, the intersection of f(S)
with P = R

2
�A {z = z(p)} is a connected, immersed close curve. Parameter-

ize this curve locally around p by its arclength by α = α(s), so that α(0) = p,
α�(0) = (E1)p = γ̇(0). Taking derivatives at s = 0 in 0 = �(N ◦ α)(s), α�(s)� =
�
�
dlα(s)

�
e
[(G ◦ α)(s)], α�(s)� = �(G ◦ α)(s),

�
dlα(s)

�−1

e
(α�(s))� we obtain

(3.5) 0 = �dGp(α�(0)), (dlp)
−1
e

(α�(0))�+ �G(p),
d

ds

����
0

�
dlα(s)

�−1

e
(α�(s))�.

Next we compute the two terms in (3.5). The first one is �dGp(γ̇(0)), e1� = 0.
Regarding the second term, note that

�
dlα(s)

�−1

e
(α�(s)) =

3�

i=1

�α�(s), (Ei)α(s)�ei,
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hence

d

ds

����
0

�
dlα(s)

�−1

e
(α�(s)) = (dlp)

−1
e

�
∇α�(0)α

�
�

+
3�

i=1

�α�(0),∇α�(0)Ei�ei,

where ∇ is the Levi-Civita connection of X = R
2

�A R with its canonical metric.
Thus, the second term of (3.5) is

�(dlp)e
(G(p)),∇α�(0)α

��+
3�

i=1

�α�(0),∇α�(0)Ei��G(p), ei�

(3.6) = �Np,∇α�(0)α
��+

3�

i=1

�α�(0),∇α�(0)Ei�Ni(p).

Using the Gauss equation for the plane P = R
2

�A {z(p)} (which has unit normal
vector field E3) we have

∇α�(0)α
� = ∇P

α�(0)α
� − �∇α�(0)E3, α

�(0)�(E3)p,

where ∇P is the Levi-Civita connection in P for the induced metric. Hence, (3.6)
can be written as

�Np,∇P

α�(0)α
�� − �∇α�(0)E3, α

�(0)�N3(p) +
3�

i=1

�α�(0),∇α�(0)Ei�Ni(p)

= �Np,∇P

α�(0)α
��+

2�

i=1

�α�(0),∇α�(0)Ei�Ni(p)

= N2(p)
�
�∇P

α�(0)α
�, (E2)p�+ �α�(0),∇α�(0)E2�

�
,

where we have used that N1(p) = 0. The first term of the last displayed formula is
the geodesic curvature κg(p) of α in the plane P at the point p, and the second term
vanishes as ∇E1E2 goes in the direction of E3 (see (2.11)). Now, (3.5), (3.6) and
the last displayed formula imply that 0 = N2(p)κg(p). As p is not a maximum or
minimum of the z-coordinate on f(S), N1(p) = 0 and G is a diffeomorphism, then
N2(p) �= 0 and thus, κg(p) = 0. This is a contradiction because the left cosets of the
binding Γ very close to p corresponding to points of the interior of the interval Iz

for z = z(p) must intersect f(S) in exactly 2 points (see the paragraph just before
property (�) for the definition of the interval Iz). This contradiction shows that
γ cannot be tangent to the left cosets of the binding at any p ∈ ∂F1 not being a
maximum or minimum value of the z-coordinate on f(S). At the (unique) maximum
and minimum values of z on f(S), a straightforward perturbation argument shows
that the similar transversality property holds, which then proves property (�) and
finishes the proof of item (1) of the theorem.

To prove item (2), first assume that X admits two different algebraic open
book decompositions. Then Theorem 3.6 insures that (up to group isomorphism)
X = R

2
�A R for some diagonal matrix A ∈ M2(R). Suppose that B1,B2 are

the algebraic open book decompositions of X with respective orthogonal bindings
Γ1 = {(x, 0, 0) | x ∈ R}, Γ2 = {(0, y, 0) | y ∈ R}. By our previous arguments,
for t ∈ (0, 1), the immersed curve αt can also be expressed as a “bigraph” over
appropriately chosen intervals in the lines {(0, y, t) | y ∈ R}, {(x, 0, t) | x ∈ R},
which implies that each such αt is embedded. But if all of the curves αt are
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embedded, then f(S) is an embedded sphere. This proves item (2) holds provided
that X admits two distinct algebraic open book decompositions.

Finally assume that X admits exactly one algebraic open book decomposition.
By Theorem 3.6, X is isomorphic either to Nil3 or to the three-dimensional simply-
connected Lie group with D-invariant D = 1 which is not isomorphic to H

3. In
both cases, for every left invariant metric �, � on X there exists a sequence of
non-unimodular, three-dimensional metric Lie groups (Xn, �, �n) with D-invariant
Dn < 1, which converge to (X, �, �) as n →∞ (see Section 2.8). X and all of these
Xn are diffeomorphic to R

3 and so, the immersed sphere f(S) can be considered
to lie in Xn. Furthermore, although the left invariant Gauss map of f depends on
the Lie group structure and on the ambient left invariant metric, the property that
the left invariant Gauss map of f is a diffeomorphism is clearly an open property
(when we vary both the Lie group structure and the left invariant metric), and so
it also holds for the immersed sphere f(S) in (Xn, �, �n) for n large. Since the Xn

admit two algebraic open book decompositions (because Dn < 1), then f(S) is an
embedded sphere in Xn by the previous paragraph. But this is clearly the same as
the desired property of f : S → X being an embedding. This completes the proof
of the theorem. �

Remark 3.13. We now explain how some of the arguments in the proof of The-
orem 3.11 can be generalized. Suppose X is a simply-connected, three-dimensional
metric Lie group that admits an algebraic open book decomposition B with bind-
ing Γ. Suppose S

1
B
⊂ S

2 ⊂ TeX is the great circle which corresponds of the set
of normal vectors to the leaves of B. Then item (1) of Theorem 3.11 holds for
any immersed sphere f : S � X such that the Gauss map G : S → S

2 restricted
to G−1(S1

B
) is a diffeomorphism with S

1
B
. Furthermore, given such an immersion

f : S � X, it is straightforward to check that f is injective if f(S) is Alexandrov
embedded or if the mean curvature of S does not change sign. For applications
of this result, suppose that f : �S � X is an (oriented) immersed sphere and the
preimage of S

1
B

under the left invariant Gauss map G of �S consists entirely of points
at which G has the same non-zero degree. Note that G has degree ±1 depending
on orientations (in the case X is metrically R

3, this follows from Gauss-Bonnet
theorem; the general case for X can be obtained by continuous deformation of the
ambient metric to flat, since the degree is an integer). Then, the restriction of G to
G−1(S1

B
) must be a diffeomorphism with S

1
B
. In particular, in the classical setting

where X = R
3, one easily obtains the result: An immersed sphere f : S � R

3

of non-negative mean curvature is embedded if for some great circle S
1 ⊂ S

2, the
preimage of S

1 under the Gauss map of S consists entirely of points of positive
Gaussian curvature.

3.3. Surfaces with constant mean curvature. In this section we begin
our study of surfaces whose mean curvature is a constant H ∈ [0,∞) (briefly, H-

surfaces). Our first goal will be to find a PDE satisfied by the left invariant Gauss
map of any H-surface in a given metric Lie group, which generalizes the well-known
fact that the Gauss map of an H-surface in R

3 is harmonic as a map between the
surface and the unit two-sphere. An important ingredient in this PDE is the notion
of H-potential, which only depends on the metric Lie group X, and that we now
describe. We will distinguish cases depending on whether or not X is unimodular.
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Definition 3.14. Let X be a three-dimensional, non-unimodular metric Lie
group. Rescale the metric on X so that X is isometric and isomorphic to R

2
�A R

with its canonical metric, where A ∈M2(R) is given by (2.19) for certain constants
a, b ≥ 0. Given H ≥ 0, we define the H-potential for X as the map R : C =
C ∪ {∞}→ C given by

(3.7) R(q) = H
�
1 + |q|2

�2 − (1− |q|4)− a
�
q2 − q2

�
− ib

�
2|q|2 − a

�
q2 + q2

��
,

where q denotes the conjugate complex of q ∈ C.

Definition 3.15. let X be a unimodular metric Lie group with structure con-
stants c1, c2, c3 defined by equation (2.24) and let µ1, µ2, µ3 ∈ R be the related
numbers defined in (2.25) in terms of c1, c2, c3. Given H ≥ 0, we define the H-

potential for (X, �, �) as the map R : C → C given by

(3.8) R(q) = H
�
1 + |q|2

�2 − i

2
�
µ2|1 + q2|2 + µ1|1− q2|2 + 4µ3|q|2

�
.

The H-potential of X only vanishes if X = R
3 and H = 0. Otherwise, the

H-potential R is non-zero at some point and extends continuously to q = ∞ with
R(∞) = ∞ except in the case X unimodular and (H,µ1 + µ2) = (0, 0); this
particular case corresponds to minimal surfaces in �E(2), Sol3, Nil3 or in R

3, in
which case the (H = 0)-potential is R(q) = 2i[(µ1 − µ3)x2 − (µ1 + µ3)y2] where
q = x + iy, x, y ∈ R. The behavior at q = ∞ of the H-potential is

R(q)
|q|4

(q→∞)�−→
�

H + 1 if X is non-unimodular,
H − i

2 (µ1 + µ2) if X is unimodular and (H,µ1 + µ2) �= (0, 0).

Lemma 3.16. The H-potential for X has no zeros in C if any of the following

holds:

(1) X = R
2
�A R with A satisfying (2.19) and H > 1 (non-unimodular case).

(2) X is unimodular and H > 0.
(3) X is isomorphic to SU(2) and H ≥ 0.

Proof. Observe that the real part of R(q) is H
�
1 + |q|2

�2 − (1 − |q|4) if X

is non-unimodular, and H
�
1 + |q|2

�2 if X is unimodular. From here one deduces
statements (1) and (2) of the lemma. Now assume that X is isomorphic to SU(2).
A direct computation gives that the imaginary part of the H-potential R(q) for X
is

�(R(q)) = c3(|q|2 − 1)2 + 4(c1�(q)2 + c2�(q)2),
where c1, c2, c3 > 0 are the structure constants for the left invariant metric on
SU(2) defined in (2.24). In particular, �(R) does not have zeros in C and the proof
is complete. �

As usual, we will represent by Rq = ∂qR, Rq = ∂qR, q ∈ C. The next result
is a consequence of the fundamental equations of a surface in a three-dimensional
metric Lie group.

Theorem 3.17 (Meeks-Mira-Pérez-Ros [32]). Let f : Σ � X be an immersed

H-surface in a three-dimensional metric Lie group X, with left invariant Gauss

map G : Σ → S
2
. Then:
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(1) Structure equation for the left invariant Gauss map.
The stereographic projection g : Σ → C of G from the South pole of S

2

satisfies the elliptic PDE

(3.9) gzz =
Rq

R
(g)gzgz +

�
Rq

R
− Rq

R

�
(g)|gz|2.

(2) Weierstrass-type representation.
Let {E1, E2, E3} be the orthonormal basis of the Lie algebra g of X given

by (2.24) if X is unimodular, and by (2.16) and (2.19) if X is non-

unimodular. Given a conformal coordinate z on Σ, we can express fz =
∂zf =

�3
i=1 Ai(Ei)f where

(3.10) A1 =
η

4

�
g − 1

g

�
, A2 =

iη

4

�
g +

1
g

�
, A3 =

η

2
, η =

4ggz

R(g)
,

and R : C → C is the H-potential for X. Moreover, the induced metric by

f on Σ is given by ds2 = λ|dz|2, with

(3.11) λ =
4

�
1 + |g|2

�2

|R(g)|2 |gz|2.

Proof. Take a conformal coordinate z = x + iy on Σ, and write the induced
metric by f as ds2 = λ|dz|2, where λ = |∂x|2 = |∂y|2. We will use brackets to express
coordinates of a vector field with respect to the orthonormal basis E1, E2, E3. For
instance,

fz =




A1

A2

A3



 , N =




N1

N2

N3



 =
1

1 + |g|2




g + g

i(g − g)
1− |g|2





are the coordinates of the tangent vector fz and of the unit normal vector field to f
(i.e., G = (N1, N2, N3) is the left invariant Gauss map), where in the last equality
we have stereographically projected G from the South pole or equivalently,

g =
N1 + iN2

1 + N3
: Σ → C.

Consider the locally defined complex function η = 2A3 = 2�fz, E3�. Clearly,
η dz is a global complex 1-form on Σ. Define B1 = η

4

�
g − 1

g

�
and B2 = iη

4

�
g + 1

g

�
.

Note that B1−iB2 = gA3, B1+iB2 = − 1
g
A3, from where B2

1+B2
2 = (B1−iB2)(B1+

iB2) = −A2
3 = A2

1 + A2
2. Also, B1N1 + B2N2 = −A3N3. From here is not hard to

prove that Ai = Bi, i = 1, 2 (after possibly a change of orientation in Σ), which are
first three formulas in (3.10).

Using the already proven first three formulas in (3.10), we get

(3.12)
λ

2
= �fz, fz� =

3�

i=1

|Ai|2 =
|η|2

8

�
|g|+ 1

|g|

�2

.

In order to get the last equation in (3.10) we need to use the Gauss equation,
which relates the Levi-Civita connections ∇ on X and ∇Σ on Σ. For instance,

∇fzfz = ∇Σ
∂z

∂z + σ(∂z, ∂z)N,
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where σ is the second fundamental form of f . Now, �fz, fz� = 0 and �fz, fz� = λ

2
since z is a conformal coordinate and f is an isometric immersion. The first equation
gives �∇Σ

∂z
∂z, ∂z� = �∇Σ

∂z
∂z, ∂z� = 0, while the second one implies

�∇Σ
∂z

∂z, ∂z� =
λz

2
− �∂z,∇Σ

∂z
∂z�

(�)
=

λz

2
− �∂z,∇Σ

∂z
∂z� =

λz

2
,

where in (�) we have used that [∂z, ∂z] = 0. Thus, ∇Σ
∂z

∂z = λz
λ

∂z and

(3.13) ∇fzfz =
λz

λ
fz + σ(∂z, ∂z)N.

Arguing similarly, ∇Σ
∂z

∂z = 0 and

(3.14) ∇fzfz = σ(∂z, ∂z)N =
λH

2
N.

On the other hand, �∇fzN, fz� = −�N,∇fzfz�
(3.13)
= −σ(∂z, ∂z) and �∇fzN, fz�

(3.14)
=

−Hλ

2 , from where we obtain

(3.15) ∇fzN = −Hfz −
2
λ

σ(∂z, ∂z)fz.

Expressing (3.13) with respect to the basis {E1, E2, E3}, we have

(3.16)




(A1)z

(A2)z

(A3)z



 +
3�

i,j=1

AiAj∇EiEj =
λz

λ




A1

A2

A3



 + σ(∂z, ∂z)




N1

N2

N3



 .

Working similarly with (3.14) and (3.15), we get

(3.17)




(A1)z

(A2)z

(A3)z



 +
3�

i,j=1

AiAj∇EiEj =
λH

2




N1

N2

N3



 ,

(3.18)




(N1)z

(N2)z

(N3)z



 +
3�

i,j=1

AiNj∇EiEj = −H




A1

A2

A3



− 2
λ

σ(∂z, ∂z)




A1

A2

A3



 .

From this point in the proof we need to distinguish between the unimodular and
non-unimodular case. We will assume X is unimodular, leaving the non-unimodular
case for the reader. Plugging (2.26) into the left-hand-side of (3.16), (3.17) and
(3.18) we get the following three first order systems of PDE:

(3.19)




(A1)z + (µ2 − µ3)A2A3

(A2)z + (µ3 − µ1)A1A3

(A3)z + (µ1 − µ2)A1A2



 =
λz

λ




A1

A2

A3



 + σ(∂z, ∂z)




N1

N2

N3



 ,

(3.20)




(A1)z − µ3A2A3 + µ2A3A2

(A2)z + µ3A1A3 − µ1A3A1

(A3)z + µ1A2A1 − µ2A1A2



 =
λH

2




N1

N2

N3



 ,

(3.21)




(N1)z − µ3A3N2 + µ2A2N3

(N2)z + µ3A3N1 − µ1A1N3

(N3)z + µ1A1N2 − µ2A2N1



 = −H




A1

A2

A3



− 2
λ

σ(∂z, ∂z)




A1

A2

A3



 .
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Plugging the three first formulas of (3.10) in the first component of (3.20), we
obtain
(3.22)
ηz

�
g − 1

g

�
+ ηgz

�
1 + 1

g2

�
= H|η|2

�
1 + 1

|g|2

�
�(g) + i|η|

2

2

�
µ3

�
g + 1

g

�
+ µ2

�
g + 1

g

��
,

where � stands for real part. If we work similarly in the second and third compo-
nents of (3.20), we have respectively
(3.23)
iηz

�
g + 1

g

�
+ iηgz

�
1− 1

g2

�
= H|η|2

�
1 + 1

|g|2

�
�(g) + |η|

2

2

�
µ3

�
1
g
− g

�
+ µ1

�
g − 1

g

��
,

where � denotes imaginary part, and

(3.24) ηz = H|η|
2(1−|g|4)
4|g|2 − i|η|

2

8

�
µ1

�
1
g

+ g
� �

g − 1
g

�
− µ2

�
1
g
− g

� �
g + 1

g

��
.

Now, multiplying (3.22)+i(3.23) by g and using (3.24) we can solve for η, finding
the fourth formula in (3.10). Substituting this formula in (3.12) we get (3.11),
which proves item (2) of the theorem in the unimodular case.

Regarding item (1), first note that

(3.25)
ηz

η
= (log η)

z

(3.10)
=

�
log

ggz

R(g)

�

z

=
gz

g
+

gzz

gz

−
(R(g))

z

R(g)
.

We again suppose that X is unimodular, leaving the non-unimodular case for the
reader. Equation (3.24) gives

(3.26)
ηz

η
=

η

4
Θ

(3.10)
=

ggz

R(g)
Θ,

where Θ = H
�

1
|g|2

− |g|2
�
− i

2

�
µ1

�
1
g

+ g
� �

g − 1
g

�
− µ2

�
1
g
− g

� �
g + 1

g

��
.

Finally, matching the right-hand-side of (3.25) and (3.26) and using that (R(g))z =
Rq(g)gz + Rq(g)gz, we obtain the desired PDE equation for g. �

One can view (3.9) as a necessary condition for the left invariant Gauss map
of an immersed H-surface in a three-dimensional metric Lie group. This condition
is also sufficient, in the following sense.

Corollary 3.18. Let Σ be a simply-connected Riemann surface and g : Σ → C

a smooth function satisfying (3.9) for the H-potential R in some three-dimensional

metric Lie group X (here H ≥ 0 is fixed). If R has no zeros in C and g is nowhere

antiholomorphic
9
, then there exists a unique (up to left translations) immersion

f : Σ � X with constant mean curvature H and left invariant Gauss map g.

Proof. One first defines η and then A1, A2, A3 by means of the formulas in
(3.10). Then a direct computation shows that

(A1)z =
gzz(g2 − 1)

R(g)
−

gz [R(g)]
z
(g2 − 1)

R(g)2
+ 2

g|gz|2

R(g)
.

As g satisfies (3.9), one can write the above equation as

(3.27) (A1)z =
|gz|2

|R(g)|2 (2gR(g)−Rq(g)(g2 − 1)).

9In other words, gz �= 0 at every point of Σ.
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As in the proof of Theorem 3.17, we will assume in que sequel that X is unimodular,
leaving the details of the non-unimodular case to the reader.

Equation (3.8) implies that
(3.28)

2gR(g)−Rq(g)(g2 − 1) = −2i|g|2
��

g +
1
g

�
(µ3 + iH) +

�
g +

1
g

�
(µ2 + iH)

�
,

where µ1, µ2, µ3 are given by (2.25) in terms of the structure constants c1, c2, c3

of the unimodular metric Lie group X. Substituting (3.28) into (3.27) and using
again (3.10) we arrive to

(3.29) (A1)z = A2A3(µ3 − iH)−A3A2(µ2 − iH).

Analogously,

(3.30)

�
(A2)z = A3A1(µ1 − iH)−A1A3(µ3 − iH),
(A3)z = A1A2(µ2 − iH)−A2A1(µ1 − iH).

Now (3.29), (3.30) imply that

(3.31)






(A1)z − (A1)z = c1(A2A3 −A3A2),
(A2)z − (A2)z = c2(A3A1 −A1A3),
(A3)z − (A3)z = c3(A1A2 −A2A1),

where we have used (2.25) to express the constants µi in terms of the cj .
We now study the integrability conditions of f : Σ � X. It is useful to consider

X to be locally a subgroup of Gl(n, R) and its Lie algebra g to be a subalgebra
of Mn(R) for some n, which we can always assume by Ado’s theorem (this is not
strictly necessary, but allows us to simplify the notation since left translation in
X becomes left multiplication of matrices, while the Lie bracket in g becomes the
usual commutator of matrices).

Assume for the moment that f : Σ → X exists with left invariant Gauss map
g. If z = x + iy is a conformal coordinate in Σ, then fz =

�3
i=1 Ai(Ei)f , where

{E1, E2, E3} is a orthonormal basis of g given by (2.24). Define

(3.32) A := f−1fz =
3�

i=1

Aiei,

where ei = (Ei)e and e is the identity element in X. Then, A is a smooth map from
Σ into the complexified space of TeX, which we can view as a complex subspace of
Mn(C). Now,

Az − (A)z = (f−1fz)z − (f−1fz)z = (f−1)zfz − (f−1)zfz + f−1(fzz − fzz)

= −(f−1fz)(f−1fz) + (f−1fz)(f−1fz) + f−1(fzz − fzz)
= −A · A+A · A+ f−1(fzz − fzz) = [A,A ] + f−1(fzz − fzz).

As 2(fzz− fzz) = i(fxy− fyx), then the usual integrability conditions fxy = fyx for
f amount to the first order PDE for A:

Az − (A)z = [A,A ] =
�

i,j

AiAj [ei, ej ] =
�

i,j

AiAjck(i,j)ei × ej ,

where i, j, k(i, j) is a permutation of 1, 2, 3 (provided that i �= j).
Now (3.31) just means that the last integrability condition is satisfied whenever

A1, A2, A3 : Σ → C are given by (3.10) in terms of a solution g of (3.9). By the
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classical Frobenius theorem, this implies that given a solution g of (3.9), there
exists a smooth map f : Σ → X such that (3.32) holds. The pullback of the
ambient metric on X through f is ds2 = λ|dz|2 with λ given by (3.11), which is
smooth without zeros on Σ provided that the H-potential R does not vanish and
g is nowhere antiholomorphic. Thus, f is an immersion. The fact that f(Σ) is
an H-surface follows directly from the Gauss and Codazzi equations for f , see the
proof of Theorem 3.17. Finally, the Frobenius theorem implies that the solution f
to (3.32) is unique if we prescribe an initial condition, say f(p0) = e where p0 is
any point in Σ. This easily implies the uniqueness property in the statement of the
corollary. �

As a direct consequence of Lemmas 3.9, 3.16 and equation (3.11), we have the
next corollary.

Corollary 3.19. The left invariant Gauss map of a connected immersed H-

surface Σ in a three-dimensional metric Lie group X is constant if and only if the

surface is a left coset of a two-dimensional subgroup of X. Such a Σ exists if and

only if X is not isomorphic to SU(2). Furthermore, if such a Σ exists then:

(1) Σ is embedded.

(2) If X is unimodular, then H = 0. In particular, a two-dimensional sub-

group of a unimodular X is always minimal.

(3) If X is non-unimodular
10

, then 0 ≤ H ≤ 1. In particular, a two-dimensional

subgroup of X has constant mean curvature H ∈ [0, 1].

Remark 3.20. In fact, Lemma 3.16 implies that Corollary 3.19 can be stated
(and its proof extends without changes) in a slightly stronger and more technical
version to be used later on. This new version asserts that for an immersed H-
surface Σ in a three-dimensional metric Lie group X such that one of the following
conditions holds,

(3.33)






X is isomorphic to SU(2),
H > 0 and X is unimodular,
H > 1 and X = R

2
�A R is non-unimodular scaled to trace(A) = 2,

then the stereographically projected left invariant Gauss map g : Σ → C of Σ sat-
isfies gz �= 0 everywhere in Σ, where z is any conformal coordinate in Σ, i.e., g is
nowhere antiholomorphic in Σ.

The next corollary gives another application of the H-potential R(q).

Corollary 3.21. Consider the non-unimodular Lie group X1 = R
2

�B R,

where B =
�

2 0
2 0

�
. By item (2a) of Theorem 2.14, the metric Lie group X1

equipped with its canonical metric is isometric (but not isomorphic) to the metric

Lie group X2 given by the unimodular group �SL(2, R) endowed with an E(κ, τ)-
metric; here the bundle curvature is τ = 1 and the base curvature is κ = −4.
Consider X1 and X2 to be subgroups of the four dimensional isometry group I(X1)
of X1, both acting by left translation and with identity elements satisfying e1 = e2.

10Recall that we have normalized the metric so that X is isometric and isomorphic to R
2
�AR

with trace(A) = 2.
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Then, the connected component ∆ of X1 ∩X2 passing through the common identity

element is the two-dimensional non-commutative subgroup of X1 given by

(3.34) ∆ = {(x, x, z) | x, z ∈ R},
with associated Lie subalgebra {α(E1 + E2) + βE3 | α,β ∈ R} where E1, E2, E3 are

defined by (2.6) for the above matrix B.

Proof. Clearly, the connected component ∆ of X1 ∩X2 passing through the
common identity element is a two-dimensional subgroup of both X1 and X2. We
want to deduce the equality (3.34) for ∆. Applying Corollary 3.19 to ∆ as a sub-
group of the unimodular group X2, we deduce that ∆ has zero mean curvature.
Since this last property is invariant under ambient isometries, then the mean cur-
vature of ∆ viewed as a subgroup of X1 is also zero. Using the H-potential formula
for H = 0 in the non-unimodular group X1 where a = 1 = b, we find that the (con-
stant) stereographic projection g : ∆ → C from the South pole of the left invariant
Gauss map of ∆ � X1 satisfies

(3.35) 0 = R(g) = |g|4 − 1− (g2 − g2)− i[2|g|2 − (g2 + g2)].

Since the real part of the last right-hand-side is |g|4 − 1, we have g = eiθ for some
θ ∈ (−π, π]. Then (3.35) becomes

0 = −4i sin θ(cos θ + sin θ),

hence θ is one of the values 0, π, 3π

4 ,−π

4 . The cases θ = 0 or θ = π can be discarded
since in this case the tangent bundle to ∆ would be generated by E2 = ∂y and
E3 = ∂z (recall that the Ei are given by equation (2.6)), which would give that ∆ is
commutative; but X2 does not admit any commutative two-dimensional subgroups.
Therefore θ = 3π

4 up to a change of orientation, which implies that the tangent
bundle to ∆ is spanned by E1 + E2 = e2z(∂x + ∂y), E3 = ∂z. Now the description
of ∆ in (3.34) follows directly. �

3.4. The proof of Theorem 3.6 and some related corollaries. In this
section we will prove the earlier stated Theorem 3.6.

Proof of Theorem 3.6. We claim that the Lie algebra su(2) of SU(2) does
not admit any two-dimensional subalgebras: Choose a basis E1, E2, E3 of su(2)
such that [Ei, Ei+1] = Ei+2 (indices are mod 3). Then for every X,Y ∈ su(2), it
holds [X,Y ] = X × Y where x is the cross product defined by the left invariant
metric and orientation in SU(2) which make E1, E2, E3 a positive orthonormal basis
(this is just the standard round metric on the three-sphere). In particular, [X,Y ]
is not in the span of X,Y provided that X,Y are linearly independent, from where
our claim follows. Therefore, SU(2) cannot have a two-dimensional subgroup and
item (1) of Theorem 3.6 is proved.

Next assume X = �SL(2, R). It suffices to demonstrate that the projection of
every two-dimensional subgroup Σ of �SL(2, R) under the covering map �SL(2, R) →
PSL(2, R) is one of the subgroups H

2
θ

defined in (2.30). Recall that �SL(2, R) is
the three-dimensional unimodular Lie group which admits a left invariant met-
ric with associated structure constants (c1, c2, c3) = (1, 1,−1) as explained in
Section 2.6. Plugging these values in equation (2.25), we obtain (µ1, µ2, µ3) =
(−1/2,−1/2, 3/2). Consider the H-potential R = R(q) defined in (3.8) for these
values of µ1, µ2, µ3. Since both the left invariant Gauss map G of Σ and its mean
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curvature are constant, and the induced metric on Σ is non-degenerate, then equa-
tion (3.11) implies that R(g) vanishes identically on Σ, where g is the stereographic
projection from the South pole of S

2 of G. In particular, Σ is minimal (see also
Corollary 3.19) and

(3.36) (1 + g2)(1 + g2) + (1− g2)(1− g2)− 12|g|2 = 0 on Σ.

Solving (3.36) we find |g|2 = 3 ± 2
√

2 on Σ. Note that {q ∈ C | |q|2 = 3 ± 2
√

2}
represents two horizontal antipodal circles in S

2.
Let H

2
θ

be one of the subgroups of PSL(2, R) described in (2.30). The arguments
in the last paragraph prove that the (constant) left invariant Gauss map of H

2
θ

lies in
{|q|2 = 3±2

√
2}. Note that if we conjugate H

2
θ

by elements in the one-dimensional
elliptic subgroup of PSL(2, R) of rotations around the origin in the Poincaré disk,
then we obtain the collection {H2

θ� | θ� ∈ S
1} and the corresponding Gauss images of

these H
2
θ� cover all possible values in {|q|2 = 3±2

√
2}. In particular, the projection

of Σ under the covering map �SL(2, R) → PSL(2, R) produces a two-dimensional
subgroup of PSL(2, R) which is tangent at the identity to one of the conjugates H

2
θ�

of H
2
θ
, which implies this projected subgroup is H

2
θ� for some θ�.

To prove item (3) of the theorem, express X = �E(2) as a semidirect product

R
2

�A R where A =
�

0 −1
1 0

�
. Using equations (2.9) and (2.10), we obtain the

values (c1, c2, c3) = (1, 1, 0) for the structure constants defined in (2.24). Plugging
these values in equation (2.25), we obtain (µ1, µ2, µ3) = (0, 0, 1). Consider the
H-potential R = R(q) defined in (3.8) for these values of µ1, µ2, µ3:

(3.37) R(q) = H(1 + |q|2)2 − 2i|q|2, q ∈ C.

Let Σ be a two-dimensional subgroup of �E(2). Arguing as in the last paragraph,
we have that R(g) = 0, where g is the stereographic projection from the South pole
of the left invariant Gauss map of Σ. Thus, (3.37) implies that Σ is minimal and
g = 0. This clearly implies Σ = R

2
�A {0} as desired.

We now prove item (4) of the theorem. Suppose X is a non-unimodular Lie
group with D-invariant D > 1. Then X is isomorphic to R

2
�A R for a matrix

A = A(b) ∈ M2(R) defined by (2.19) with a = 0 and b > 0. Consider the H-
potential R = R(q) defined in (3.7) for these values of a, b:

(3.38) R(q) = H(1 + |q|2)2 − (1− |q|2)− 2bi|q|2, q ∈ C.

Let Σ be a two-dimensional subgroup of X. With the same notation and arguments
as before, we have R(g) = 0 so (3.38) implies g = 0 and H = 1. Then, Σ = R

2
�A{0}

and (4) is proved.
We next prove item (5) of the theorem. The case X = R

3 was explained in
Example 3.2. The remaining cases to consider are precisely X = R

2
�A R, where

A is one of the following matrices:

(a): A =
�

0 1
0 0

�
, which produces Nil3.

(b): A =
�

1 0
0 b

�
where b ∈ R, which produces Sol3 (for b = −1), H

3

(for b = 1) and all non-unimodular groups with normalized D-invariant
4b

(1+b)2 < 1.
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(c): A =
�

1 0
1 1

�
, which produces the non-unimodular group with D-

invariant D = 1 not isomorphic to H
3.

We first consider case (a). Applying the same arguments as before, we con-
clude that in the case of Nil3 the structure constants can be taken as (c1, c2, c3) =
(−1, 0, 0), hence (µ1, µ2, µ3) = (1

2 ,− 1
2 ,− 1

2 ) and the H-potential is

(3.39) R(q) = H(1 + |q|2)2 + i
�
�(q2) + |q|2

�
, q ∈ C.

Then, the Gauss map of a two-dimensional subgroup of Nil3 has its value in the
circle on S

2 corresponding to the imaginary axis after stereographic projection
from the South pole. Since these are the same values as the subgroups in the
algebraic open book decomposition described in Example 3.3, we conclude that the
only two-dimensional subgroups of Nil3 are the leaves of this algebraic open book
decomposition.

For case (b), first note the possibility b = 1 (so X = H
3) was explained

in Example 3.2. So assume b �= 1. In Example 3.4 we described two algebraic
open book decompositions of R

2
�A R, whose two-dimensional subgroups have

Gauss map images contained in the two great circles of S
2 corresponding to the

closures of the real and imaginary axes of C ∪ {∞} after stereographic projection
from the South pole. Thus it suffices to show that R

2
�A R does not admit any

two-dimensional subgroup Σ whose Gauss map image is a point outside of the
union of the closures of the real and imaginary axes. Arguing by contradiction,
suppose such a Σ exists. Intersecting Σ with R

2
�A{0} we obtain a one-dimensional

subgroup of the commutative group R
2

�A {0} = R
2, hence a straight line l. Using

the notation E1, E2, E3 in (2.6), we have that l is spanned by some vector of the
form u = λe1 + µe2 for some λ, µ ∈ R − {0}, where ei = Ei(�0), i = 1, 2, and
�0 = (0, 0, 0). Then we can take a second vector v in the tangent space to Σ at
the origin, of the form v = µe1 − λe2 + δe3, where δ ∈ R − {0} and e3 = E3(�0).
Thus λE1 + µE2, µE1 − λE2 + δE3 generate the Lie algebra of Σ and so, we have
[λE1 + µE2, µE1 − λE2 + E3](�0) ∈ T�0Σ. But [λE1 + µE2, µE1 − λE2 + E3](�0) =
−δ(λe1 + µbe2). Since this last vector must be a linear combination of u, v and
v has a non-zero component in the e3-direction, then δ(λe1 + µbe2) is a multiple
of u. Using that b �= 1 we easily obtain that either λ = 0 or µ = 0, which is a
contradiction.

Arguing in a similar manner as in case (b), one shows that every two-dimensional
subgroup in X for case (c) is in the algebraic open book decomposition described
in Example 3.5.

Finally we prove items (6) and (7) of the theorem. Item (6) and the first
statement of item (7) follow immediately from Corollary 3.19. Item (7a) follows
from item (4). Item (7b) follows from item (5) and the fact that each of the
open book decompositions contains the subgroup R

2
�A {0} with constant mean

curvature 1 and it also contains the minimal subgroup corresponding to the (x, z)
or (y, z)-plane. This completes the proof of Theorem 3.6. �

We finish this section with three useful corollaries to Theorem 3.6.

Corollary 3.22. Let Σ be a compact immersed surface Σ in a three-dimensional,

simply-connected metric Lie group different from SU(2). Then, the maximum value
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of the absolute mean curvature function of Σ is strictly bigger than the mean cur-

vature of any of its two-dimensional subgroups; in particular, Σ is not minimal.

Proof. This property follows from applying the usual maximum principle to
Σ and to the leaves of the foliation of left cosets of a given subgroup. �

Corollary 3.23. Suppose that X is a three-dimensional, simply-connected

metric Lie group such that in the case X is a non-unimodular group of the form

R
2
�AR, then trace(A) = 2. Then the H-potential of X vanishes at q0 ∈ C for some

value H0 of H if and only if there exists a two-dimensional Lie subgroup Σ ⊂ X
with constant mean curvature H0 and whose left invariant Gauss map is constant

of value q0.

Proof. By item 3.11 of Theorem 3.17, the constant value of the left invariant
Gauss map of any two-dimensional subgroup Σ ⊂ X is a zero of the H-potential of
the ambient metric Lie group.

A careful reading of the proof of Theorem 3.6 demonstrates that if the H-
potential of X vanishes at some point q0 ∈ C for the value H0 of H, then X
contains a two-dimensional subgroup Σ with constant mean curvature H0 whose
left invariant Gauss map is q0 after appropriately orienting Σ. �

As a direct consequence of Theorem 3.6 and Corollary 3.23 we have the following
statement.

Corollary 3.24. Let X be a three-dimensional, simply-connected metric Lie

group and H ≥ 0. Then, the H-potential for X is everywhere non-zero if and only

if:

(1) X is isomorphic to SU(2), or

(2) X is not isomorphic to SU(2), is unimodular and H > 0, or

(3) X = R
2

�A R is non-unimodular with trace(A)= 2, D-invariant D ≤ 1
and H > 1, or

(4) X is non-unimodular with trace(A)= 2, D-invariant D > 1 and H = 1.

3.5. A Hopf-type quadratic differential for surfaces of constant mean
curvature in three-dimensional metric Lie groups. Next we will see how the
PDE (3.9) for the left invariant Gauss map of an H-surface in a three-dimensional
metric Lie group X allows us to construct a complex quadratic differential Q (dz)2
for any H-surface in X, which will play the role of the classical Hopf differential
when proving uniqueness of H-spheres in X. The quadratic differential Q (dz)2
is semi-explicit, in the sense that it is given in terms of data on the H-surface
together with an auxiliary solution g1 : C → C of (3.9) which is assumed to be a
diffeomorphism. We have already described properties which require the assump-
tion of diffeomorphism on the left invariant Gauss map of an immersed sphere
(Lemma 3.10, Theorem 3.11, see also Theorem 3.26 below). We will see conditions
under which this assumption holds (Theorems 3.29 and 3.32). This definition of
Q (dz)2 is inspired by the work of Daniel and Mira for H-surfaces in Sol3.

Let f : Σ � X be an immersed H-surface in a three-dimensional metric Lie
group X, where the value of H satisfies (3.33). Choose an orthonormal basis
{E1, E2, E3} of the Lie algebra g of X given by (2.24) if X is unimodular, and
by (2.16) and (2.19) if X is non-unimodular. Let G : Σ → S

2 be the left invariant
Gauss map of f , let g : Σ → C denote its projection from the South pole of S

2 and
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let R : C → C be the H-potential for X. Assume that the following condition holds:

(3.40) There exists a solution g1 : C → C of (3.9) which is a diffeomorphism.

Then, the formula

(3.41) Q (dz)2 =
�
L(g)g2

z
+ M(g)gzgz

�
(dz)2

defines a global11 complex, smooth quadratic differential on Σ, where M(q) =
1/R(q) for all q ∈ C and L : C → C is implicitly given by

(3.42) L(g1(ξ)) = −M(g1(ξ))(g1)ξ

(g1)ξ

.

Note that L is finite-valued since R does not vanish at any point of C by (3.33)
and Lemma 3.16. The fact that Q (dz)2 is well-defined outside points of Σ where
g = ∞ is clear. For points where g = ∞, simply note that q4L(q) is bounded and
smooth around q = ∞, which implies L(g)gzgz is bounded and smooth around a
point in Σ where g = ∞; the second term in (3.41) can be treated the same way.

A crucial property of Q (dz)2, which depends on equation (3.9), is that it sat-
isfies the following Cauchy-Riemann inequality:

(3.43)
|Qz|
|Q| is locally bounded in Σ.

Inequality (3.43) implies that either Q (dz)2 is identically zero on Σ, or it has
only isolated zeros of negative index, see e.g., Alencar, do Carmo and Tribuzy [3].
By the classical Hopf index theorem, we deduce the next proposition (note that the
condition (3.33) holds for H-spheres by Corollary 3.22).

Theorem 3.25 (Meeks-Mira-Pérez-Ros [32]). Suppose that X is a three-dimensional

metric Lie group. Suppose that there exists an immersed H-sphere SH in X whose

left invariant Gauss map is a diffeomorphism. Then every immersed H-sphere in

X satisfies Q (dz)2 = 0.

We now investigate the condition Q (dz)2 = 0 locally on an H-surface Σ � X
for a value of H such that condition (3.33) holds and for which there exists an
immersed H-sphere SH in X whose left invariant Gauss map is a diffeomorphism
(we follow the same notation as above). By Remark 3.20, the stereographically
projected Gauss map g of Σ is nowhere antiholomorphic. By (3.41), we have

(3.44)
g

z

gz

= − L(g)
M(g)

(3.42)
=

(g1)ξ

(g1)ξ

.

On the other hand, a direct computation gives

(3.45) 0
(A)
≤

����
gz

gz

����
2

=
|dg|2 − 2 Jac(g)
|dg|2 + 2 Jac(g)

(B)
≤ 1,

where dg is the differential of g and Jac(g) its Jacobian. Moreover, equality in (A)
holds if and only if gz = 0 while equality in (B) occurs if and only if Jac(g) = 0.
Since g1 is a diffeomorphism, then equality in (B) cannot hold for g1. Hence (3.44)
implies that equality in (B) cannot hold for g and thus, g is a local diffeomorphism.

We can now prove the main result of this section.

11This means that Q (dz)2 does not depend on the conformal coordinate z in Σ.
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Theorem 3.26 (Meeks-Mira-Pérez-Ros [32]). Let X be a three-dimensional

metric Lie group and H ≥ 0 be a value for which there exists an immersed H-

sphere SH in X whose left invariant Gauss map is a diffeomorphism. Then, SH is

the unique (up to left translations) H-sphere in X.

Proof. Suppose f : C � X is an H-sphere and let g : C → C be its stere-
ographically projected left invariant Gauss map. By Theorem 3.25, the complex
quadratic differential Q (dz)2 associated to f vanishes identically. By the discussion
just before the statement of this theorem, g is a (global) diffeomorphism. Hence g
and the stereographically projected left invariant Gauss map g1 of SH are related
by g1 = g ◦ ϕ for some diffeomorphism ϕ : C → C. Now ϕ can be proved to be
holomorphic by the local arguments in the proof of Lemma 4.6 in [14]. Hence,
up to conformally reparametrizing SH , we conclude that both SH and f(C) are
H-surfaces in X with the same left invariant Gauss map. Then, Corollary 3.18
insures that SH and f(C) differ by a left translation. �

3.6. Index-one H-spheres in simply-connected three-dimensional met-
ric Lie groups. Let Σ be a compact (orientable) immersed H-surface in a simply-
connected, three-dimensional metric Lie group X. Its Jacobi operator is the lin-
earization of the mean curvature functional,

L = ∆ + |σ|2 + Ric(N),

where ∆ is the Laplacian in the induced metric, |σ|2 the square of the norm of the
second fundamental form of Σ and N : Σ → TX a unit normal vector field along Σ.
It is well-known that L is (L2) self-adjoint and its spectrum consists of a sequence

λ1 < λ2 ≤ λ3 ≤ . . . ≤ λk ≤ . . .

of eigenvalues (that is, for each λk there exists a non-zero smooth function uk : Σ →
R such that Luk + λkuk = 0 and each eigenvalue appears in the sequence counting
its multiplicity) with λk �∞ as k →∞. The number of negative eigenvalues of L
is called the index of Σ, which we denote by Ind(Σ).

A function u : Σ → R is called a Jacobi function if Lu = 0. Since Killing fields
in X produce 1-parameter subgroups of ambient isometries, moving the surface Σ
through these 1-parameter subgroups and then taking inner product with N , we
produce Jacobi functions on Σ (some of which might vanish identically). Given a
point p ∈ Σ, we can choose a right invariant vector field (hence Killing) F on X
such that Fp /∈ TpΣ. Then the related Jacobi function u = �F,N� is not identically
zero on Σ. Also, since X is homeomorphic to S

3 or R
3, Σ is homologous to zero.

An application of the divergence theorem to a three-chain with boundary Σ implies
that u changes sign. From here we can extract several consequences:

(1) 0 is always an eigenvalue of L. The multiplicity of 0 as an eigenvalue is
called the nullity of Σ.

(2) The Jacobi function u is not the first eigenfunction of L or equivalently,
λ1 < 0.

(3) Ind(Σ) ≥ 1, and Ind(Σ) = 1 if and only if λ2 = 0.
The next lemma shows that the index of Σ is usually at least three.

Lemma 3.27. Let Σ be a compact oriented H-surface in a simply-connected,

three-dimensional metric Lie group. The nullity of Σ is at least three unless Σ is

an immersed torus and X is SU(2) with a left invariant metric.
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Proof. Since X has three linearly independent right invariant vector fields
F1, F2, F3, then their inner products with N produce three Jacobi functions on
Σ. If these functions are linearly independent, then the nullity of Σ is at least
three. Otherwise, there exists a linear combination F of F1, F2, F3 which is tangent
everywhere along Σ. Note that F is everywhere non-zero in X. By the Hopf index
theorem, the Euler characteristic of Σ is zero, i.e., Σ must be an immersed torus.
It remains to show that in this case, X = SU(2). Otherwise, X is diffeomorphic
to R

3 and the integral curves of F are proper non-closed curves in X. Since the
integral curves of F in Σ do not have this property because Σ is compact, then X
must be SU(2) with a left invariant metric. �

Corollary 3.28. Let Σ be an immersed H-sphere of index one in a simply-

connected, three-dimensional metric Lie group. Then, the nullity of Σ is three.

Proof. By Theorem 3.4 in Cheng [6] (who studied the particular case when
operator is the Laplacian, see e.g. Rossman [54] for a proof for a general operator
of the form ∆ + V , V being a function), the space of Jacobi functions on an index-
one H-sphere in a Riemannian three-manifold has dimension at most three. Hence,
Lemma 3.27 completes the proof. �

The classical isoperimetric problem in a three-dimensional, simply-connected
metric Lie group X consists of finding, given a (finite) positive number t ≤ V (X)
(here V (X) denotes the volume of X, which is infinite unless X = SU(2)), those
compact surfaces Σ in X which enclose a region Ω ⊂ X of volume t and minimize
the area of ∂Ω = Σ. Note that solutions of the isoperimetric problem are embedded.

It is well-known that given t ∈ (0, V (X)] there exist solutions of the isoperimetric
problem, and they are smooth surfaces. The first variation of area gives that every
such a solution Σ has constant mean curvature, and the second variation of area
insures that the second derivative of the area functional for a normal variation with
variational vector field fN , f ∈ C∞(Σ), is given by

Q(f, f) :=
d2

dt2

����
t=0

Area(Σ + fN) = −
�

Σ
f Lf.

The quadratic form Q defined above is called the index form for Σ. For a
variation of Σ with vector field fN , the condition to preserve infinitesimally the
enclosed volume can be equivalently stated by the fact that f has mean zero along
Σ. Thus if Σ is a solution of the isoperimetric problem (briefly, a isoperimetric

surface), then

(3.46) Q(f, f) ≥ 0 for all f ∈ C∞(M) such that
�

Σ
f = 0.

Compact oriented (not necessarily embedded) surfaces Σ in X satisfying (3.46)
are called stable

12. Hence solutions of the isoperimetric problem are stable surfaces,
but the converse is not true for certain left-invariant metrics on S

3 (see Torralbo
and Urbano [58]); however there are no known compact stable H-surfaces which
are not solutions to the isoperimetric problem when X is diffeomorphic to R

3. If a
compact, orientable immersed H-surface Σ in X has λ2 < 0, then the eigenfunctions

12Beware: This notion of stability for an H-surface M in a Riemannian three-manifold is
sometimes called weak stability and the stronger case where Q(f, f) ≥ 0 for all f ∈ C

∞(M) means
that M is stable.
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of L corresponding to λ1, λ2 generate a subspace W of C∞(Σ) with dimension at
least two, where Q is negative definite. Then we can find a non-zero solution f ∈ W
of

�
Σ f = 0, which implies by (3.46) that Σ is not stable. Therefore,

(3.47) If Σ is a stable immersed H-surface in X, then Ind(Σ) = 1.

We now relate the index-one property for an H-sphere with the property that
its left invariant Gauss map is a diffeomorphism.

Theorem 3.29 (Meeks-Mira-Pérez-Ros [32]). Let SH be an index-one H-

sphere immersed in a three-dimensional metric Lie group X. Then, the left in-

variant Gauss map of SH is a diffeomorphism.

Proof. Let G : SH → S
2 be the left invariant Gauss map of SH . By elementary

covering theory, it suffices to check that G is a local diffeomorphism. Arguing by
contradiction, assume this condition fails at a point p0 ∈ SH . Since G is invariant
under left translation, we may assume that p0 is the identity element e of X.
Thus, there is a unit vector v1 ∈ TeSH that lies in the kernel of the differential
dGe : TeSH → TG(e)S

2. Let F be the right invariant vector field in X such that
Fe = v1. Since F is right invariant, then it is a Killing field for the left invariant
metric of X.

We claim that dGe cannot be the zero linear map. Arguing by contradiction, if
dGe = 0, then choose a local conformal coordinate z = x + iy, |z| < ε (here ε > 0)
in SH so that z = 0 corresponds to e ∈ SH . Thus, the stereographic projection g
of G from the South pole of S

2 satisfies gz(0) = 0. Since the induced metric on
SH is unbranched at e, then (3.11) implies that R(g(e)) = 0, where R denotes the
H-potential for X. By Corollary 3.23, there exists a two-dimensional subgroup Σ
of X with constant mean curvature H whose left invariant Gauss map is constant
of value g(e) (in particular, X is not isomorphic to SU(2)). This is contrary to
Corollary 3.22, and our claim follows.

We next prove that if N : SH → TX denotes the unit normal field to SH , then
the Jacobi function u = �N,F � vanishes to at least second order at e (note that
u(e) = 0). To do this, choose a local conformal coordinate z = x+ iy, |z| < ε in SH

so that z = 0 corresponds to e ∈ SH and ∂x(0) = v1 ∈ TeSH . Hence {∂x(0), ∂y(0)}
is an orthonormal basis of TeSH and Gx(0) = 0 where as usual, Gx = ∂G

∂x
. Consider

the second order ODE given by particularizing (3.9) to functions of the real variable
y, i.e.,

(3.48) �gyy =
Rq

R
(�g)(�gy)2 +

�
Rq

R
− Rq

R

�
(�g)|�gy|2.

Let �g = �g(y) be the (unique) solution of (3.48) with initial conditions �g(0) =
g(0), �gy(0) = gy(0). We want to use Corollary 3.18 with this function �g : {|z| <
ε} → C. To do this, we must check that the H-potential does not vanish in C

and �gy does not vanish on {|z| < ε}; the first property follows from the arguments
in the last paragraph, while the second condition holds (after possibly choosing
a smaller ε > 0) since �gy(0) = gy(0) �= 0 because dGe �= 0. By Corollary 3.18,
there exists a exists an immersion �f : {|z| < ε} � X with constant mean curvature
H and stereographically projected left invariant Gauss map �g. The uniqueness of
�f up to left translations and the fact that �g only depends on y imply that �f is
invariant under the 1-parameter group of ambient isometries {φt = lexp(tFe)}t∈R

which generate the right invariant (hence Killing) vector field F ; recall that F is
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determined by the equation Fe = ∂x(0). In particular, the function �u = � �N,F �
vanishes identically, where �N is the unit normal vector field to Σ = �f({|z| < ε})
(note that we can choose �N so that �Ne = Ne). Given v ∈ TeSH = TeΣ,

due(v) = v(�N,F �) = �∇vN,Fe�+ �Ne,∇vF �,
and analogously,

0 = d�ue(v) = �∇v
�N,Fe�+ � �Ne,∇vF � = �∇v

�N,Fe�+ �Ne,∇vF �.
Subtracting the last two equations we get

(3.49) due(v) = �∇vN −∇v
�N,Fe�.

On the other hand, N =
�3

i=1 NiEi where E1, E2, E3 is an orthonormal basis
of the Lie algebra g of X. Thus G = (N1, N2, N3) in coordinates with respect to
(E1)e, (E2)e, (E3)e and

∇vN =
�

i

(dNi)e(v)(Ei)e +
�

i

Ni(e)∇vEi = dGe(v) +
�

i

Ni(e)∇vEi.

Arguing in the same way with �N , subtracting the corresponding equations and
using (3.49) we obtain

(3.50) due(v) = �dGe(v)− d �Ge(v), Fe�,

where �G is the S
2-valued left invariant Gauss map of Σ. Now, if we take v = v1

in (3.50), then the right-hand-side vanishes since v1 lies in the kernel of dGe and
�Gx(0) = 0. If we take v = ∂y(0) in (3.50), then the right-hand-side again vanishes
since �gy(0) = gy(0). Therefore u vanishes at e at least to second order, as desired.

By Theorem 2.5 in Cheng [6], the nodal set u−1(0) of u = �N,F � is an analytic
1-dimensional set (u changes sign on SH since u(e) = 0 and u being identically
zero on SH would imply that SH is a torus) containing at least two transversely
intersecting arcs at the point e. Since such an analytic set of a sphere separates
the sphere into at least three domains, then SH cannot have index one by the
Courant’s nodal domain theorem (see Proposition 1.1 in [6] when the operator is
the Laplacian and see e.g., Rossman [54] for a proof for a general operator of the
form ∆ + V , V being a function). This contradiction completes the proof. �

Corollary 3.30. Let X be a three-dimensional metric Lie group and suppose

that there exists an immersed index-one H-sphere SH in X. Then:

(1) SH is the unique H-sphere in X up to left translations. In particular,

some left translation of SH inherits all possible isometries of X which fix

the origin.

(2) SH is round when X is isometric to R
3
, S

3
or H

3
, and SH is rotationally

invariant in the cases X is isometric to an E(κ, τ)-space with κ ≤ 0.
(3) If X has constant sectional curvature, X is an E(κ, τ)-space with κ ≤ 0

or X is algebraically isomorphic to Sol3 or to a three-dimensional metric

non-unimodular group with D-invariant D ≤ 1, then SH is embedded.

Proof. To prove item (1) of the corollary just apply Theorems 3.26 and 3.29.
Item (2) is a direct consequence of the last sentence in (1) (item (2) also holds in
the case X = S

2 × R which is not a Lie group, see Abresch and Rosenberg [1]).
The embeddedness property for any H-sphere in the case that the curvature

of X is constant follows from their roundedness. Similarly, the embeddedness of
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spheres in the ambient E(κ, τ) with κ ≤ 0 follows from the fact that in these spaces
all examples are rotational and by classification they are embedded [2] (nevertheless,
some H-spheres fail to be embedded in certain Berger spheres E(κ, τ) with κ > 0,
see Torralbo [57]). By item (5) of Theorem 3.6 and item (2) of Theorem 3.11, H-
spheres in a simply-connected, three-dimensional non-unimodular metric Lie group
with D-invariant D ≤ 1 or in Sol3 whose left invariant Gauss maps are diffeomor-
phisms are embedded. It now follows by Theorem 3.29 that an immersed index-one
H-sphere SH in such a space is embedded. �

Corollary 3.30 is a particular case of the following expected conjecture.

Conjecture 3.31 (Hopf Uniqueness Conjecture, Meeks-Mira-Pérez-Ros). Let

X be a simply-connected, three-dimensional homogeneous Riemannian manifold.

For every H ≥ 0, any two H-spheres immersed in X differ by an ambient isometry

of X.

Conjecture 3.31 is known to hold if X = R
3, S

3 or H
3 (Hopf [18]), if the

isometry group of X is four-dimensional (Abresch and Rosenberg [1, 2]) and if
X is the Lie group Sol3 with its standard metric given as the canonical metric in
R

2
�A(1) R, where A(1) ∈ M2(R) is defined in (2.33) with c1 = 1 (Daniel and

Mira [14], Meeks [30]). We will sketch in the next section the proof of the validity
of Conjecture 3.31 when X = SU(2) (Meeks, Mira, Pérez and Ros) and some other
recent progress along this line.

3.7. Classification of H-spheres in three-dimensional metric Lie groups.
Let X be a simply-connected, three-dimensional homogeneous Riemannian mani-
fold. Given a compact surface Σ immersed in X, we will denote by �H�∞(Σ) the
maximum value of the absolute mean curvature function |H| : Σ → R of Σ. As-
sociated to X we have the following non-negative constant, which we will call the
critical mean curvature of X:

(3.51) H(X) = inf{�H�∞(Σ) | Σ is compact surface immersed in X}.

We next illustrate this notion of critical mean curvature with examples. It is
well known that H(R3) = 0 and H(H3) = 1. Recall that every simply-connected,
three-dimensional homogeneous Riemannian manifold is either S

2(k)×R or a metric
Lie group (Theorem 2.4). In the case X = S

2(k)× R, there exist minimal spheres
immersed in X and so, H(X) = 0. Existence of minimal spheres is also known to
hold when X is a Lie group not diffeomorphic to R

3, i.e., X = SU(2) with some
left invariant metric, hence in this case H(X) is again zero. In fact, Simon [55]
proved that for any Riemannian metric on S

3, there exists an index-one embedded
minimal two-sphere in this manifold. If X is non-unimodular, then, after rescaling
the metric, X is isomorphic and isometric to R

2
�A R for some matrix A ∈M2(R)

with trace(A) = 2; in this case, H(X) ≥ 1 by the mean comparison principle
applied to the foliation {R2

�A {z} | z ∈ R} all whose have leaves mean curvature
1.

Consider again a simply-connected, three-dimensional homogeneous Riemann-
ian manifold X, which must be either S

2(k) × R or a metric Lie group. In the
first case, uniqueness of H-spheres is known to hold [1] (i.e. Conjecture 3.31 is a
theorem for X = S

2(k)×R). We now extend this classification result of H-spheres
to any simply-connected, three-dimensional, compact metric Lie group.
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Theorem 3.32 (Meeks-Mira-Pérez-Ros [32]). Let X be a simply-connected,

three-dimensional metric Lie group diffeomorphic to S
3
. Then:

(1) The moduli space of H-spheres in X (up to left translations) is an analytic

curve parameterized by the mean curvatures of the surfaces, which take on

all values in [0,∞).
(2) If SH is an immersed H-sphere in X, then SH has index one and nullity

three. In particular, the left invariant Gauss map of SH is a diffeomor-

phism.

Sketch of the proof. Consider the space M(X) of immersed H-spheres
of index one in X (up to left translations), with H ≥ 0 varying. Recall that
Theorem 3.29 insures that for every S ∈M(X), the left invariant Gauss map of S
is a diffeomorphism.

It is well-known that for t > 0 sufficiently small, solutions to the isoperimetric
problem in X for volume t exist and geometrically are small, almost-round balls
with boundary spheres S(t) of constant mean curvature approximately

�
4π

3t

�1/3.
Since every such S(t) is area-minimizing for its enclosed volume, then S(t) is stable
and by (3.47), Ind(S(t)) = 1. Hence S(t) ∈M(X) and we deduce that there exists
an H0 > 0 such that for any H ∈ [H0,∞), M(X) contains an embedded H-sphere.

The next step in the proof consists of demonstrating that M(X) is an analytic
one-manifold locally parameterized by its mean curvature values. This is a standard
application of the Implicit Function Theorem that uses the already proven property
in item (2) of Theorem 3.29 that the nullity of each S ∈ M(X) is three, see for
instance the works of Koiso [22], Souam [56] and Daniel and Mira [14] for this type
of argument.

Next we consider the embedded index-one H0-sphere SH0 ∈ M(X) and start
deforming SH0 in the set of immersed spheres in X with constant mean curvature by
decreasing its mean curvature, producing an analytic curve H

Γ�→ SH as indicated
in the last paragraph. In fact, the image of the curve Γ lies entirely in M(X),
i.e., the spheres SH = Γ(H) all have index one since otherwise, an intermediate
value argument would lead to an H-value for which SH has nullity four, which is
impossible by Corollary 3.28.

Our goal is to show that the maximal interval of H-values in which such a
deformation curve Γ can be defined is of the form [0, H0]. To do this we argue
by contradiction, assuming that the maximal interval of H-values is of the form
(H∞, H0] for some H∞ > 0. We want to study what possible problems can occur
at H∞ in order to stop the deformation process. After left translation, we can
assume that all spheres SH = Γ(H) with H ∈ (H∞, H0] pass through the identity
element e = I2 ∈ SU(2). A standard compactness argument shows that in order for
the process of deforming spheres to stop, there must exist a sequence Hn � H∞

such that, after possibly passing to a subsequence, one of the following cases occurs:
(1) The second fundamental forms σn of the SHn blow-up at points pn ∈ SHn

with �σn�(pn) ≥ n.
(2) The areas of the SHn are greater than n.

Next we will indicate why the first possibility cannot occur. One way of proving
uniform bounds for the second fundamental form of the SH is by mimicking the
arguments in Proposition 5.2 in Daniel and Mira [14], which can be extended to our
situation X ∼= SU(2) (actually, these arguments work in every three-dimensional
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metric Lie group X since a bound on the norm of the second fundamental form
of an H-surface can be found in terms of the H-potential for X, which in turn
can be bounded in terms of H and the structure constants of X provided that the
left invariant Gauss map is a diffeomorphism). A more geometric way of proving
uniform bounds for the second fundamental form of the SH is as follows. Arguing by
contradiction, if the second fundamental forms of the spheres SHn are not uniformly
bounded, then one can left translate and rescale SHn on the scale of the maximum
norm of its second fundamental form, thereby producing a limit surface which is a
non-flat, complete immersed minimal13 surface M∞ in R

3. Under the limit process,
the index of the Jacobi operator cannot increase; hence M∞ has index zero or one.
Index zero for M∞ cannot occur since otherwise M∞ would be stable, hence flat.
Thus, M∞ has index one. The family of such complete minimal surfaces is classified
(López and Ros [28]), with the only possibilities being the catenoid and the Enneper
minimal surface. The catenoid can be ruled out by flux arguments (its flux is non-
zero, but the CMC flux of a sphere SH is zero since it is simply-connected), while
the Enneper minimal surface can be discarded since it is not Alexandrov-embedded
while the spheres SH in the image of Γ all have this property (recall that the original
SH0 was chosen embedded).

Therefore, in order for the deformation process to stop at H∞ > 0, the areas
of the SH are unbounded as H � H∞ while the second fundamental form of SH

remains uniformly bounded. Thus, there exists a sequence SHn ⊂ M(X) with
Hn � H∞ with Area(SHn) ≥ n for all n ∈ N and �σn� uniformly bounded.
Since the left invariant Gauss maps Gn of the surfaces SHn are diffeomorphisms,
it is possible to find open domains Ωn ⊂ SHn with e ∈ Ωn, having larger and
larger area, whose images Gn(Ωn) have arbitrarily small spherical area. Carrying
out this process carefully and using the index-one property for the SHn , one can
produce a subsequence of domains Ωn which converge as mappings as n →∞ to a
strongly stable14 limit which is a complete immersion f : M∞ � X with constant
mean curvature H∞ with e ∈ f(M∞), bounded second fundamental form and with
degenerate left invariant Gauss map G∞, in the sense that the spherical area of
G∞ is zero. Since X is isomorphic to SU(2), then Corollary 3.19 implies that G∞
cannot have rank zero at any point. Hence, G∞ has rank one or two at every point.
Since the spherical area of M∞ is zero, then G∞ has rank one at every point of M∞.
It follows that the image of G∞ is an immersed curve C ⊂ S

2 and M∞ fibers over
C. In particular, M∞ is either simply-connected or it is a cylinder. With a little
more work, the image of M∞ is seen to be invariant under a 1-parameter subgroup
of X, where the fibers of G∞ : M∞ → C project to the related orbits of this action.

After possibly replacing M∞ by a minimal element limit, in the sense of Re-
mark 4.4 in Section 4, the limit surface M∞ is quasiperiodic, see item (6) in Theo-
rem 4.3. Since M∞ is quasiperiodic and the image surface f(M∞) is invariant under
a 1-parameter subgroup of X, then for any closed arc I on C of unit length, the
related subdomain G−1

∞ (I) either has finite area (if G−1
∞ (I) is a compact annulus)

or it has linear area growth (if G−1
∞ (I) is an infinite strip), with a uniform growth

13Minimality of the limit surface follows since the original mean curvatures Hn are bounded
by above.

14An H-surface Σ is called strongly stable if its index form is non-negative on the space of
compactly supported smooth functions on Σ; the difference between stability and strong stability
is that in the first one only imposes non-negativity of the index form on compactly supported
functions whose mean is zero.
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constant in this last case. Again, by the quasiperiodicity property of M∞, it follows
that the intrinsic area growth of this surface is at most quadratic. In particular,
the underlying conformal structure of M∞ is parabolic. This last property together
with its strong stability imply that the space of bounded Jacobi functions on M∞

is one-dimensional and coincides with the space of Jacobi functions with constant

sign (Manzano, Pérez and Rodŕıguez [29]). Let V1, V2 be a pair of linearly inde-
pendent right invariant vector fields on X which are tangent to f(M∞) at e. Since
these vector fields are Killing and bounded, then they must be globally tangent
to M∞, otherwise they would produce a bounded Jacobi function on the surface
which changes sign. But since the structure constants of SU(2) are non-zero, we
obtain a contradiction to the fact that [V1, V2]e is a linear combination of V1 and
V2; here we are using the fact that the space of right invariant vector fields on a Lie
group is isomorphic as a Lie algebra to its Lie algebra of left invariant vector fields.
This contradiction finishes the sketch of the proof that the curve Γ is defined for
all values [0, H0].

One we know that M(X) contains an H-sphere SH for every value H ∈ [0,∞),
Corollary 3.30 insures that for every H > 0, SH is the unique H-sphere in X
up to left translations. The same uniqueness property extends to H = 0 since
every minimal sphere Σ in X has nullity three (Corollary 3.28) and thus it can be
deformed to H-spheres with H > 0 by the Implicit Function theorem; this implies
that Σ = S0 = Γ(0). The remaining properties in the statement of the theorem
follow from Theorem 3.29. �

Theorem 3.32 is the SU(2)-version of a work in progress by Meeks, Mira,
Pérez and Ros [32] whose goal is to generalize it to every simply-connected, three-
dimensional metric Lie group. We next state this expected result as a conjecture.

Conjecture 3.33 (Meeks-Mira-Pérez-Ros [32]). Let X be a simply-connected,

three-dimensional metric Lie group diffeomorphic to R
3
. Then:

(1) The moduli space of H-spheres in X (up to left translations) is parame-

terized by H ∈ (H(X),∞).
(2) If SH is an immersed H-sphere in X, then SH is embedded, has index one

and nullity three.

3.8. Calculating the Cheeger constant for a semidirect product. Let
X be a complete Riemannian three-manifold of infinite volume. The Cheeger con-

stant of X is defined by

(3.52) Ch(X) = inf
�

Area(∂Ω)
Volume(Ω)

| Ω ⊂ X compact, ∂Ω smooth
�

.

Classically, the Cheeger constant is defined for compact Riemannian manifolds,
or at least for Riemannian manifolds of finite volume. In this case, the denominator
in (3.52) should be replaced by the minimum between the volume of Ω and the
volume of its complement. In the case of infinite ambient volume, definition (3.52)
clearly generalizes the classical setting.

Consider a semidirect product R
2

�A R for some A ∈ M2(R). An elemen-
tary computation using (2.6) and (2.7) gives that the volume element dV for the
canonical metric in R

2
�A R is

(3.53) dV = e−ztrace(A) dx ∧ dy ∧ dz,
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from where one has that the volume of R
2
�A R with its canonical metric is infinite.

The next result calculates the Cheeger constant for this Riemannian manifold; it is
a special case of a more general result of Peyerimhoff and Samiou [52], who proved
the result for the case of an ambient simply-connected, n-dimensional solvable15

Lie group.

Theorem 3.34. Let A ∈M2(R) be a matrix with trace(A) ≥ 0. Then,

Ch(R2
�A R) = trace(A).

Proof. We first prove that Ch(R2
�A R) ≥ trace(A). Arguing by contradic-

tion, assume that Ch(R2
�A R) < trace(A). Consider the isoperimetric profile of

R
2

�A R with its canonical metric, defined as the function I : (0,∞) → R given by

I(t) = min{Area(∂Ω) | Ω ⊂ R
2

�A R region with Volume(Ω) = t}.

Note that the minimum above is attained for every value of t due to the fact that
R

2
�A R is homogeneous.
The isoperimetric profile has been extensively studied in much more generality.

We will emphasize here some basic properties of it, see e.g., Bavard and Pansu [5],
Gallot [17] and the survey paper by Ros [53]:

(1) I is locally Lipschitz. In particular, its derivative I � exists almost every-
where in (0,∞).

(2) I has left and right derivatives I �−(t) and I �+(t) for any value of t ∈ (0,∞).
Moreover if H is the mean curvature of an isoperimetric surface ∂Ω with
Volume(Ω) = t (with the notation above), then I �+(t) ≤ 2H ≤ I �−(t).

(3) The limit as t → 0+ of I(t)
(36πt2)1/3 is 1.

Since we are assuming Ch(R2
�A R) < trace(A), there exists a domain Ω0 ⊂

R
2
�AR with compact closure and smooth boundary, such that Area(∂Ω0) is strictly

less than trace(A)·Volume(Ω0). Consider in the (V,A)-plane (here V means volume
and A area) the representation of the isoperimetric profile, i.e., the graph G(I) of
the function I, together with the straight half-line r = {A = trace(A)V}. Then
the pair (Volume(Ω0),Area(Ω0)) is a point in the first quadrant of the (V,A)-plane
lying strictly below r. Furthermore by definition of isoperimetric profile, G(I)
intersects the vertical segment {Volume(Ω0)} × (0,Area(∂Ω0)] at some point B.
Property (3) above implies that G(I) lies strictly above r for t > 0 sufficiently
small. Since G(I) passes through the point B, then there exists some intermediate
value V1 ∈ (0,Volume(Ω0)) such that I has first derivative at V = V1 and the
slope of G(I) at (V1, I(V1)) is strictly smaller than the one of r. By property (2)
above, if Ω1 is an isoperimetric domain for volume V1, then ∂Ω1 has constant mean
curvature H where I �(V1) = 2H. In particular, ∂Ω1 is a compact, embedded H-
surface in R

2
�A R whose mean curvature is strictly smaller than trace(A)/2, the

mean curvature of the planes R
2

�A {z}, z ∈ R (see Section 2.3). Since these
planes form a foliation of R

2
�A R, we deduce that ∂Ω touches and lies on the

mean convex side of some plane R
2

�A {z0}, contradicting the mean comparison
principle. Therefore, Ch(R2

�A R) ≥ trace(A).

15A Lie group X is called solvable if it admits a series of subgroups {e} = X0 ≤ X1 ≤
· · · ≤ Xk = X such that Xj−1 is normal in Xj and Xj/Xj−1 is abelian, for all j = 1, . . . , k.
Taking X1 = R

2
�A {0} and k = 2 we deduce that every three-dimensional semidirect product is

a solvable group.
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Next we prove that Ch(R2
�A R) ≤ trace(A). Consider the disk D(R) of radius

R centered at the origin in R �A {0}. For a > 1, let

C(a, R) = {(x, y, z) ∈ R
2

�A R | (x, y, 0) ∈ D(R), z ∈ [0, a]}

be the “vertical cylinder” in R
2
�AR over D(R), between heights 0 and a. From (2.11),

we deduce that the divergence of the vector field ∂z is −trace(A) on the whole space
R

2
�A R. Applying the Divergence Theorem to ∂z in C(a, R) we have

(3.54) −trace(A) ·Volume(C(a, R)) =
�

∂C(a,R)
�∂z, N�,

where N is the outward pointing unit normal vector field to ∂C(a, R). Note that
if we call DTop(a, R) = ∂C(a, R) ∩ {z = a} and S(a, R) = ∂C(a, R) ∩ {0 < z < a},
then N |

DTop(a,R) = ∂z and N |D(R) = −∂z. Hence the right-hand-side of (3.54) can
be written as
(3.55)�

∂C(a,R)
�∂z, N� = Area(DTop(a, R))−Area(D(R))

= 2Area(DTop(a, R)) + Area(S(a, R))−Area(∂C(a, R)).

An elementary computation using (2.6) and (2.7) gives that the area element
dAz for the restriction of the canonical metric to the plane R

2
�A {z} is dAz =

e−ztrace(A) dx ∧ dy, which implies that

Area(DTop(a, R)) = e−atrace(A)Area(D(R)) = πR2e−atrace(A).

This implies that for R > 0 fixed,
(3.56)

lim
a→∞

Area(DTop(a, R))
Area(∂C(a, R))

≤ lim
a→∞

Area(DTop(a, R))
Area(D(R))

=
�

1 if trace(A) = 0,
0 if trace(A) > 0.

On the other hand, for each a there is a constant M(a) such that for every t ∈ [0, a],

Length(S(a, R) ∩ {z = t}) ≤ M(a)Length(∂D(R)).

Then, by the coarea formula, we obtain:

(3.57) Area(S(a, R)) ≤ a M(a) · Length(∂D(R)) = 2πR a M(a).

Then for a > 1 fixed,

(3.58) lim
R→∞

Area(S(a, R))
Area(∂C(a, R))

≤ lim
R→∞

Area(S(a, R))
Area(D(R))

≤ lim
R→∞

2a M(a)
R

= 0.

(In particular, inequalities in (3.58) become equalities). By equations (3.54) and
(3.55) we have

(3.59) trace(A)
Volume(C(a, R))
Area(∂C(a, R))

= 1− 2
Area(DTop(a, R))
Area(∂C(a, R))

− Area(S(a, R))
Area(∂C(a, R))

.

We now distinguish between the unimodular and non-unimodular cases. In the
non-unimodular case we have trace(A) > 0 and (3.56), (3.58), (3.59) imply

sup
R,a>1

trace(A)
Volume(C(a, R))
Area(∂C(a, R))

= 1,

which gives the desired inequality Ch(R2
�A R) ≤ trace(A).
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It remains to prove that when trace(A) = 0, then Ch(R2
�A R) = 0. Using

that Area(DTop(a, R)) does not depend on a and (3.59) we have

Area(∂C(a, R)) = 2Area(D(R)) + Area(S(a, R)).

Dividing the last equation by Area(D(R)) and applying the second equality in (3.58),
we conclude that

(3.60) lim
R→∞

Area(∂C(a, R))
Area(D(R))

= 2.

Applying the coarea formula to the z-coordinate (recall that ∇z = ∂z is unitary in
the canonical metric on R

2
�A R), we have

Volume(C(a, R)) =
�

a

0
Area(C(a, R) ∩ {z = t}) dt = aArea(D(R)),

and so, by (3.60),

lim
R→∞

Volume(C(a, R))
Area(∂C(a, R))

=
a

2
.

Hence letting a go to ∞,

inf
a,R>1

Area(∂C(a, R))
Volume(C(a, R))

= 0,

which clearly implies Ch(R2
�A R) = 0. �

Let X be a three-dimensional metric Lie group which is diffeomorphic to R
3.

We have already defined the critical mean curvature H(X) for X, see (3.51), and
the Cheeger constant Ch(X) studied in this section. We next consider another
interesting geometric constant associated to X. Let

I(X) = inf{mean curvatures of isoperimetric surfaces in X}.

We next relate these geometric constants.

Proposition 3.35. Let X be a three-dimensional metric Lie group which is

diffeomorphic to R
3
. Then,

H(X) ≤ I(X) ≤ 1
2
Ch(X).

Furthermore, if X is a metric semidirect product, then the three constants H(X),
I(X) and

1
2Ch(X) coincide.

Proof. The fact that H(X) ≤ I(X) follows directly from their definitions.
The argument to prove that 2 I(X) ≤ Ch(X) is very similar to the proof of the
inequality trace(A) ≤ Ch(R2

�A R) in Theorem 3.34: just exchange the number
trace(A) by 2 I(X) and follow the same arguments to produce a point (V1, I(V1)) in
the (V,A)-plane which lies in the graph G(I) of the isoperimetric profile of X, such
that the slope of G(I) at (V1, I(V1)) is strictly smaller than 2 I(X). This implies
that the mean curvature of ∂Ω1 is strictly smaller than I(X), which is impossible
by definition of I(X).

In the particular case that X = R
2

�A R for some A ∈ M2(R), then Theo-
rem 3.34 gives that 1

2Ch(X) is the mean curvature H0 of each of the leaves of the
foliation {R2

�A {z} | z ∈ R} of X. Now the inequality H0 ≤ H(X) follows directly
from the mean curvature comparison principle. �
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4. The Dynamics Theorem for H-surfaces of bounded second
fundamental form and positive mean curvature.

Throughout this section X denotes a non-compact, simply-connected, three-
dimensional metric Lie group X equipped with the transitive group of isometries
given by left translation by elements of X. As usual, we let e denote the identity
element of X.

A general problem in classical surface theory is to understand the asymptotic
geometric structure of a properly embedded H-surface M in X. In this section
we will restrict to the case where the mean curvature H of M satisfies
H > 0. The main technical tool we will use for obtaining a description of the
asymptotics of M will be a general compactness result, Theorem 4.3, which we call
the Dynamics Theorem. This Dynamics Theorem first describes the space T (M)
of H-surfaces in M obtained as limits of sequences of left translations of M , where
these left translations are defined by points in M diverging to infinity, and then
studies dynamical type properties of the mapping

Σ ∈ T (M) �→ T (Σ) ⊂ T (M)

into the power set of T (M). For a related Dynamics Theorem for minimal surfaces
in the case X = R

3 see the earlier work of Meeks, Pérez and Ros [37]. Since we
will be brief in some arguments, we refer the reader to the paper of Meeks and
Tinaglia [47] for further explanations.

We now describe in more detail the construction of the space T (M). We will
call any left translation lg : X → X a translation (here g is an element in X) and we
will call the left translated H-surface lg(M) the translation of M by g and denote
it by gM . Note that whenever g ∈ M , the translated surface g−1M passes through
e. When M has bounded second fundamental form, for any divergent sequence of
points pn ∈ M , a subsequence of the translated surfaces (pn)−1M converges on
compact subsets of X to a properly immersed surface of the same constant mean
curvature H which can be proved to bound a smooth open subdomain on its mean
convex side. The collection T(M) of all these limit surfaces sheds light on the
asymptotic geometry of M at infinity.

We will focus our attention on the subset T (M) ⊂ T(M) consisting of the
connected components of surfaces in T(M) which pass through e. Actually it is
important to consider every surface Σ ∈ T (M) to be a pointed surface, in the sense
that the abstract surface Σ is equipped with a base point that corresponds to one of
its 1 or 2 points that pass through e. In particular, when the surface passes through
e twice, then this surface gives rise to two distinct pointed surfaces in T (M). The
space T (M) turns out to have a natural compact metric space structure, induced by
the Hausdorff distance of certain small intrinsic neighborhoods of their base points
in X (see the sketched proof of Theorem 4.3 below for more details).

Given a surface Σ ∈ T (M), it can be shown that T (Σ) is a subset of T (M)
(this property reduces basically to the fact that limits of limit points of a set A in
a metric space are in turn limit points of A). In particular, we can consider T to
represent a map

T : T (M) → P(T (M)),
where P(T (M)) denotes the power set of T (M). Using the fact that T (M) has
a natural compact metric space topology, we can obtain classical dynamics type
results on T (M) with respect to the map T . These dynamics results include the
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existence of non-empty minimal T -invariant subsets in T (M) and are described in
the Dynamics Theorem.

For simplicity, we first restrict ourselves to a statement of a dynamics type
result for the space T (M). All of these limit surfaces satisfy the almost-embedded
property of Σ described in the next definition. For deeper related results such as
the Minimal Element Theorem and for a more complete statement of the Dynamics
Theorem in R

3, see [47].

Definition 4.1. Suppose W is a complete three-manifold with boundary ∂W =
Σ, together with an isometric proper immersion f : W � X such that f restricted
to the interior of W is injective. This being the case, if f(Σ) is an H-surface and
W lies on the mean convex side of Σ, we call the image surface f(Σ) a strongly

Alexandrov embedded
16 H-surface.

We note that, by elementary separation properties, any properly embedded
H-surface in X is always strongly Alexandrov embedded. Since the limits we will
consider in T (M) are produced by translating M by points in M diverging to
infinity, from this point on we will only consider surfaces M in X which are non-
compact (and connected).

Definition 4.2. Suppose M ⊂ X is a connected, strongly Alexandrov embed-
ded H-surface with bounded second fundamental form.

(1) T (M) is the set of all connected, strongly Alexandrov embedded H-
surfaces Σ ⊂ X, which are obtained in the following way. There exists a
sequence of points pn ∈ M diverging to infinity, such that the translated
surfaces (pn)−1M converge C2 on compact subsets of X to a strongly
Alexandrov embedded H-surface Σ�, and Σ is a connected component
of Σ� passing through e. Actually we consider the immersed surfaces in
T (M) to be pointed in the sense that if such a surface is not embedded
at e, then we consider the surface to represent two different surfaces in
T (M) depending on a choice of one of the two preimages of e.

(2) ∆ ⊂ T (M) is called T -invariant, if Σ ∈ ∆ implies T (Σ) ⊂ ∆.
(3) A non-empty subset ∆ ⊂ T (M) is called a minimal T -invariant set if it

is T -invariant and contains no smaller non-empty T -invariant subsets.
(4) If Σ ∈ T (M) and Σ lies in a minimal T -invariant subset of T (M), then

Σ is called a minimal element of T (M).

With these definitions at hand, we now state the main result of this section; in
the next statement, B(p, R) will denote the open ball in X of radius R centered at
the point p and B(R) = B(e, R).

Theorem 4.3 (Dynamics Theorem for H-surfaces in metric Lie groups).
Let X be a non-compact, simply-connected, three-dimensional metric Lie group and

M ⊂ X be a connected, non-compact, strongly Alexandrov embedded H-surface with

bounded second fundamental form. Let W be the three-manifold on the mean convex

side of M . Then, the following statements hold:

16More generally, an isometrically immersed surface f : Σ � X is called Alexandrov embedded
if f extends to a proper isometric immersion f : W � X of a complete three-manifold with
boundary ∂W = Σ. Alexandrov embedded surfaces are always properly immersed.
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(1) For any R > 0, there exist positive constants c1, c2 depending only on X,

R and on an upper bound of the norm of the second fundamental form of

M , such that for any p ∈ M ,

(4.1) c1 ≤ Area(M ∩ B(p, R)) ≤ c2.

(2) T (M) is non-empty and T -invariant.

(3) T (M) has a natural compact topological space structure, induced by a dis-

tance dT (M). The distance dT (M) is induced by the Hausdorff distance

between compact subsets of X.

(4) A non-empty T -invariant set ∆ ⊂ T (M) is a minimal T -invariant set if

and only if whenever Σ ∈ ∆, then T (Σ) = ∆.

(5) Every non-empty T -invariant subset of T (M) contains a non-empty min-

imal T -invariant subset. In particular, since T (M) is itself a non-empty

T -invariant set, then T (M) always contains minimal elements.

(6) Let Σ be a minimal element of T (M). For all D, ε > 0, there exists

a dε,D > 0 such that the following strong quasiperiodicity statement

holds. For every smooth, connected compact domain Ω ⊂ Σ with intrinsic

diameter less than D and for all q ∈ Σ, there exists a smooth compact,

connected domain Ω� ⊂ Σ and a (left) translation l : X → X, such that

dΣ(q,Ω�) < dε,D and dH(Ω, l(Ω�)) < ε,

where dΣ is intrinsic distance function on Σ and dH is the Hausdorff

distance on compact sets in X.

Sketch of the Proof. Corollary 5.2 in [45] implies item (1); also see the
paper [41] of Meeks and Rosenberg for the proof in the R

3 setting.
The uniform local area and local curvature estimates for M given in item (1),

together with standard compactness arguments imply that for any divergent se-
quence of points {pn}n in M , a subsequence of the translated surfaces (pn)−1M
with base points equal to e = (pn)−1pn converges on compact subsets of X to a
strongly Alexandrov embedded H-surface M∞ in X. The pointed component M∞

of M∞ passing through e is a surface in T (M). Hence, T (M) is non-empty.
Let Σ ∈ T (M) and Σ� ∈ T (Σ). By definition of T (Σ), any compact domain of

Σ� can be approximated by a sequence of translations of compact domains Ωn ⊂ Σ
“running out to infinity” as n → ∞. In turn, by definition of T (M), each of
the Ωn can be approximated by a sequence of translations of compact domains
Ωn(m) ⊂ M “running out to infinity” as m → ∞. Hence, a diagonal argument
implies that Σ� ∈ T (M). Thus, T (M) is T -invariant, which proves item (2).

Suppose that Σ ∈ T (M) is embedded at the origin. Since M has bounded
second fundamental form, the same holds for Σ and thus, there exists an ε > 0
depending only on an upper bound of the second fundamental form of M , so that
the component Σ(e, ε) of Σ∩B(ε) passing through e satisfies the following properties:

(1) Σ(e, ε) is topologically a disk.
(2) ∂Σ(e, ε) ⊂ ∂B(ε).
(3) In normal coordinates, Σ(e, ε) is a graph with gradient at most 1 over its

projection to the tangent plane TeΣ ⊂ TeX.
Given another such Σ� ∈ T (M), we define

dT (M)(Σ,Σ�) = dH (Σ(e, ε),Σ�(e, ε)) ,
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where dH is the Hausdorff distance. If e is not a point where Σ is embedded, then
consider Σ to represent two different pointed surfaces in T (M) and choose Σ(e, ε)
to be the disk in Σ∩B(ε) containing the chosen base point. With this modification,
the above metric is well-defined.

Using that the surfaces in T (M) have uniform local area and curvature esti-
mates (see item (1)), we will show T (M) is sequentially compact and hence com-
pact. Let {Σn}n ∈ T (M) be a sequence of pointed surfaces and let {Σn(e, ε)}n

be the related sequence of graphical disks defined in the previous paragraph. A
standard compactness argument implies that a subsequence, {Σni(e, ε)}ni of these
disks converges to a graphical H-disk D∞. It is straightforward to show that D∞

lies on a complete, strongly Alexandrov embedded surface Σ∞ with constant mean
curvature H. Furthermore, Σ∞ is a limit of compact domains ∆ni ⊂ Σni . In turn,
these ∆ni are limits of translations of compact domains in M , where the transla-
tions diverge to infinity. Hence, Σ∞ lies in T (M) and by definition of dT (M), a
subsequence of {Σn}n converges to Σ∞. Thus, T (M) is a compact metric space
with respect to the metric dT (M). We remark that this compactness argument can
be readily modified to prove that the topology of T (M) is independent of the radius
ε used to define dT (M). This completes the proof of item (3).

We now prove item (4). Suppose ∆ is a non-empty, minimal T -invariant set
and Σ ∈ ∆. By definition of T -invariance, T (Σ) ⊂ T (∆) ⊂ ∆. By item (2), T (Σ)
is a non-empty T -invariant set, which in turn implies T (Σ) = ∆ since ∆ is assumed
to be minimal, which proves one of the implications. Suppose now that ∆ is a non-
empty T -invariant set and whenever Σ ∈ ∆, T (Σ) = ∆. If ∆� ⊂ ∆ is a non-empty
T -invariant set, then there exists a Σ� ∈ ∆�, and then ∆ = T (Σ�) ⊂ ∆� ⊂ ∆. Hence,
∆� = ∆, which means ∆ is a minimal T -invariant set and item (4) is proved.

Next we prove item (5) through an application of Zorn’s lemma. Suppose
∆ ⊂ T (M) is a non-empty T -invariant set and Σ ∈ ∆. Using the definition of
T -invariance, it is elementary to prove that T (Σ) is a T -invariant set in ∆ which is
a closed subset of T (M); essentially, this is because the set of limit points of a set
in a topological space forms a closed set, also see the proofs of items (2) and (3) for
this type of argument. Consider the set Λ of all non-empty T -invariant subsets of ∆
which are closed sets in T (M) and partially order by inclusion; as we just observed,
this collection Λ is non-empty. Suppose Λ� ⊂ Λ is a non-empty linearly ordered
subset and we will prove that the intersection

�
∆�∈Λ� ∆� is an element of Λ. In our

case, this means that we only need to prove that such an intersection is non-empty,
because the intersection of closed (resp. T -invariant) sets in a topological space is
a closed set (resp. T -invariant). Since each element of Λ� is a closed subset of the
compact space T (M) and the finite intersection property holds for the collection
Λ�, then

�
∆�∈Λ� ∆� �= Ø. Thus,

�
∆�∈Λ� ∆� ∈ Λ is a lower bound for Λ�. By Zorn’s

lemma, ∆ contains a smallest, non-empty, closed T -invariant subset Ω. We now
check that Ω is a non-empty minimal T -invariant subset of ∆. If Ω� is a non-empty
T -invariant subset of Ω, then there exists a Σ� ∈ Ω�. By our previous arguments,
T (Σ�) ⊂ Ω� ⊂ Ω is a non-empty T -invariant set in ∆ which is a closed set in
T (M), i.e., T (Σ�) ∈ Λ. Hence, by the minimality property of Ω in Λ, we have
T (Σ�) = Ω� = Ω. Thus, Ω is a non-empty, minimal T -invariant subset of ∆, which
proves item (5). For the proof of the uniform almost periodicity property in item (6)
see the proof of the similar item (10) in the Dynamics Theorem in [47]. �
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Remark 4.4. In the sketch of the proof of Theorem 3.32, we needed a version
of Theorem 4.3 that is applicable to a complete non-compact immersed H-surface
M of bounded second fundamental form in a simply-connected, three-dimensional
metric Lie group X which is isomorphic to SU(2). In this case, one defines T (M)
to be the set of complete immersed pointed H-surfaces which arise from limits of
translates of intrinsically diverging points pn ∈ M . With some rather straightfor-
ward modifications in the arguments in the proof of Theorem 4.3, one can obtain a
Dynamics Theorem in this setting. In this case, the minimal elements Σ in T (M)
also have the uniform almost periodicity type property described in item (6) of
Theorem 4.3.

Generalizing the ideas in this section from dynamics properties for sets of H-
surfaces in a three-dimensional metric Lie group to certain sets of pointed spaces
lead naturally to Theorem 4.7 below, which is useful for studying deeper results in
the theory of H-surfaces in metric Lie groups. For these applications of the next
theorem and for its proof we refer the reader to the paper [32] by Meeks, Mira,
Pérez and Ros.

Definition 4.5. Given two positive numbers ε, A0, let Λ(X, ε, A0) denote the
set of all complete pointed Riemannian three-manifolds (W,p) with boundary ∂W ,
which satisfy:

(1) p ∈ W .
(2) There exists an isometric immersion F(W,p) : (W,p) → (X, e). In particu-

lar, W is locally isometric to X.
(3) Each component of ∂W is an H-surface for some H ≥ ε with respect to

the inward pointing unit conormal to W along its boundary.
(4) |A∂W | ≤ A0, where |A∂W | denotes the norm of the second fundamental

form of ∂W .
We identify (W1, p1), (W2, p2) ∈ Λ(X, ε, A0) if there is an isometry between W1 and
W2 that preserves their base points.

In [32] it is shown that whenever X is a simply-connected, three-dimensional
metric Lie group, then Λ(X, ε, A0) has a some natural distance function D such
that the metric space (Λ = Λ(X, ε, A0), D) is compact. To each element (W,p) ∈ Λ
with W being non-compact, we associate the following subset T (W,p) ⊂ Λ: An
element (W �, p�) ∈ T (W,p) if and only if there is a sequence of divergent points
pn ∈ W such that the sequence of elements (Wn, pn) ∈ Λ obtained by replacing the
base point p of (W,p) by the new base points pn, converges to (W �, p�) ∈ Λ. By
item 2 of Theorem 4.7 below, T (W,p) is a closed subset of Λ and hence a compact
subspace.

Next consider the mapping

(W �, p�) ∈ T (W,p) �→ T (W �, p�) ⊂ T (W,p)

into the power set of T (W,p). In particular, we can consider T to represent a map

T : T (W,p) → P(T (W,p)),

where P(T (W,p)) denotes the power set of T (W,p).

Definition 4.6. Suppose (W,p) ∈ Λ(X, ε, A0).
(1) A subset ∆ ⊂ T (W,p) is called T -invariant if T (W �, p�) ⊂ ∆ for all

(W �, p�) ∈ ∆.
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(2) A non-empty subset ∆ ⊂ T (W,p) is called a minimal T -invariant set if it
is T -invariant and contains no smaller non-empty T -invariant subsets.

(3) If (W �, p�) ∈ T (W,p) and (W �, p�) lies in a minimal T -invariant subset of
T (W,p), then (W �, p�) is called a minimal element of T (W,p).

Theorem 4.7 (Dynamics Theorem for Λ(X, ε, A0) [32]). Let X be a simply-

connected, three-dimensional metric Lie group with associated compact metric space

(Λ = Λ(X, ε, A0), D).
Given (W,p) ∈ Λ with W non-compact, the following statements hold:

(1) T (W,p) is non-empty and T -invariant.

(2) T (W,p) is a closed subset of Λ and so, it has a natural compact topological

space structure induced by the metric D on Λ.

(3) A non-empty T -invariant set ∆ ⊂ T (W,p) is a minimal T -invariant set

if and only if whenever (W �, p�) ∈ ∆, then T (W �, p�) = ∆.

(4) Every non-empty T -invariant subset of T (W,p) contains a non-empty

minimal T -invariant subset. In particular, since T (W,p) is itself a non-

empty T -invariant set, then T (W,p) always contains minimal elements.

Minimal elements in T (W,p) also have a certain quasiperiodicity, in a manner
similar to item 6 of Theorem 4.3. To state this property, we need to introduce
the notion of extended immersion F δ

(W,p) : (W,p)δ → (X, e) associated to every
(W,p) ∈ T (W,p). Suppose that F(W,p) : (W,p) → (X, e) is the associated isomet-
ric immersion to (W,p) ∈ T (W,p). We define the space (W,p)δ as the analytic
Riemannian three-manifold obtained abstractly by attaching to ∂W the exterior
pointing geodesic segments of length δ > 0 normal to the boundary of the immer-
sion F(W,p)(W ) with the related metric induced by F(W,p) (this can be done for
δ > 0 small enough since the ∂W admits normal coordinates of certain uniform
positive radius, see Theorem 3.5 in [45]). In this way, the isometric immersion
F(W,p) defined on (W,p) ⊂ (W,p)δ extends naturally to (W,p)δ − (W,p) via the
exponential map for geodesics; we denote this extended local isometry by F δ

(W,p).
With this notation in hand, we finish this section by stating the aforementioned
quasiperiocidity property for minimal elements in T (W,p).

Proposition 4.8. In the conditions of Theorem 4.7, let (W �, p�) be a minimal

element of T (W,p) and F(W �,p�) : (W �, p�) → (X, e) be an isometric immersion with

associated extended immersion F δ

(W �,p�). Then for all d0, τ > 0, there exists a

Dτ,d0 > 0 such that:

For every smooth, connected compact domain Ω ⊂ (W �, p�) with intrinsic diam-

eter less than d0 and for all q ∈ (W �, p�), there exists a smooth compact, connected

domain Ω(q) ⊂ (W �, p�) and a lift I : Ω → (W �, p�)δ
through F δ

(W �,p�) such that

DW �(q,Ω(q)) < Dτ,d0 and DH(Ω, I(Ω�)) < τ,

where DW �(q,Ω(q)) is intrinsic distance function on W �
between the point q and

the set Ω(q), and DH is the Hausdorff distance on compact sets of (W �, p�)δ
.

5. Open problems and unsolved conjectures for H-surfaces in
three-dimensional metric Lie groups.

We finish this excursion on surface theory in three-dimensional metric Lie
groups by discussing a number of outstanding problems and conjectures. In the
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statement of most of these conjectures we have listed the principal researchers to
whom the given conjecture might be attributed and/or those individuals who have
made important progress in its solution. The first four of these conjectures were
mentioned earlier in the manuscript; see Conjectures 3.31 and 3.33. These first
four conjectures are motivated by the results described in Corollary 3.30 and The-
orems 3.17, 3.26 and 3.32.

In all of the conjectures below, X will denote a simply-connected,
three-dimensional metric Lie group.

In reference to the following open problems and conjectures, the reader should
note that Meeks, Mira, Pérez and Ros are in the final stages of completing a pa-
per [32] that solves several of them. Their work should give complete solutions to
Conjectures 5.1 and 5.3. Their claimed results would also demonstrate that every
H-sphere in X has index one (see the first statement of Conjecture 5.2) and that
whenever X is diffeomorphic to R

3, then X contains an H(X)-surface which is an
entire Killing graph (this result implies that the last statement in Conjecture 5.7
and the statement (2a) in Conjecture 5.9 both hold). We expect that by the time
these notes are in final form for publication, the paper [32] will be available and
consequentially, some parts of this section on open problems will be updated to
include these results.

We start by restating Conjecture 5.1, of which Corollary 3.30 is a partial answer.

Conjecture 5.1 (Hopf Uniqueness Conjecture, Meeks-Mira-Pérez-Ros).
For every H ≥ 0, any two H-spheres immersed in X differ by a left translation

of X.

Recall that every immersed H-sphere Σ � X has nullity three (see Corol-
lary 3.28), and that Σ has index one provided that it is stable (3.47). The next
conjecture claims that this index property does not need the hypothesis on stability,
and that stability holds whenever X is non-compact.

Conjecture 5.2 (Index-one Conjecture, Meeks-Mira-Pérez-Ros).
Every H-sphere in X has index one. Furthermore, when X is diffeomorphic to R

3
,

then every H-sphere in X is stable.

Note that by Theorem 3.32, the first statement in Conjecture 5.2 holds in the
case X is SU(2) with a left invariant metric. Also note that the hypothesis that
X is diffeomorphic to R

3 in the second statement of Conjecture 5.2 is necessary
since the second statement fails to hold in certain Berger spheres, see Torralbo and
Urbano [58]. By Corollary 3.30, the validity of the first statement in Conjecture 5.2
implies Conjecture 5.1 holds as well.

Hopf [18] proved that the moduli space of non-congruent H-spheres in R
3 is

the interval (0,∞) (parametrized by their mean curvatures H) and all of these H-
spheres are embedded and stable, hence of index one; these results and arguments
of Hopf readily extend to the case of H

3 with the interval being (1,∞) and S
3 with

interval [0,∞), both H
3 and S

3 endowed with their standard metrics; see Chern [7].
By Theorem 3.32, if X is a metric Lie group diffeomorphic to S

3, then the moduli
space of non-congruent H-spheres in X is the interval [0,∞), again parametrized
by their mean curvatures H. However, Torralbo [57] proved that some H-spheres
fail to be embedded in certain Berger spheres. These results motivate the next two
conjectures. Recall that H(X) is the critical mean curvature of X defined in (3.51).
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Conjecture 5.3 (Hopf Moduli Space Conjecture, Meeks-Mira-Pérez-Ros).
When X is diffeomorphic to R

3
, then the moduli space of non-congruent H-spheres

in X is the interval (H(X),∞), which is parametrized by their mean curvatures

H. In particular, every H-sphere in X is Alexandrov embedded and H(X) is the

infimum of the mean curvatures of H-spheres in X.

The results of Abresch and Rosenberg [1, 2] and previous classification re-
sults for rotationally symmetric H-spheres demonstrate that Conjecture 5.3 holds
when X is some E(κ, τ)-space. More recent work of Daniel and Mira [14] and of
Meeks [30] imply that Conjecture 5.3 (and the other first five conjectures in our
listing here) holds for Sol3 with its standard metric.

Conjecture 5.4 (Hopf Embeddedness Conjecture, Meeks-Mira-Pérez-Ros).
When X is diffeomorphic to R

3
, then H-spheres in X are embedded.

We recall that this manuscript contains some new results towards the solution
of the last conjecture, see Theorem 3.11 and Corollary 3.30.

The next conjecture is known to hold in the flat R
3 as proved by Alexandrov [4]

and subsequently extended to H
3 and to a hemisphere of S

3.

Conjecture 5.5 (Alexandrov Uniqueness Conjecture). If X is diffeomorphic

to R
3
, then the only compact, Alexandrov embedded H-surfaces in X are topologi-

cally spheres.

In the case X = R
2
�A R where A is a diagonal matrix, there exist two orthogo-

nal foliations of X by planes of reflectional symmetry, as is the case of Sol3 with its
standard metric. By using the Alexandrov reflection method, the last conjecture is
known to hold in this special case; see [14] for details.

Although we do not state it as a conjecture, it is generally believed that for
any value of H > H(X) and g ∈ N, there exist compact, genus-g, immersed,
non-Alexandrov embedded H-surfaces in X, as is the case in classical R

3 setting
(Wente [60] and Kapouleas [21]).

Conjecture 5.6 (Stability Conjecture for SU(2), Meeks-Pérez-Ros).
If X is diffeomorphic to S

3
, then X contains no strongly stable complete H-surfaces.

Conjecture 5.6 holds when the metric Lie group X is in one of the following
two cases:

• X is a Berger sphere with non-negative scalar curvature (see item (5) of
Corollary 9.6 in Meeks, Pérez and Ros [38]).

• X is SU(2) endowed with a left invariant metric of positive scalar curvature
(by item (1) of Theorem 2.13 in [38], a complete strongly stable H-surface
Σ in X must be compact, in fact must be topologically a two-sphere or a
projective plane; hence one could find a right invariant Killing field on X
which is not tangent to Σ at some point of Σ, thereby inducing a Jacobi
function which changes sign on Σ, a contradiction).

It is also proved in [38] that if Y is a three-sphere with a Riemannian metric (not
necessarily a left invariant metric) such that it admits no strongly stable complete
minimal surfaces, then for each integer g ∈ N∪{0}, the space of compact embedded
minimal surfaces of genus g in Y is compact, a result which is known to hold for
Riemannian metrics on S

3 with positive Ricci curvature (Choi and Schoen [8]).
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Conjecture 5.7 (Stability Conjecture, Meeks-Mira-Pérez-Ros). Suppose X is

diffeomorphic to R
3
. Then

H(X) = sup{mean curvatures of complete strongly stable H-surfaces in X}.

Furthermore, there always exists a properly embedded, complete, strongly stable

H(X)-surface in X.

By the work in [32], the validity of the first statement in Conjecture 5.7 would
imply Conjecture 5.1 and the first statement in Conjecture 5.2 (essentially, this
is because if a sequence of index one spheres SHn � X with Hn � H∞ ≥ 0
have areas diverging to infinity, the one can produce an appropriate limit of left
translations of SHn which is a strongly stable H∞-surface in X, which in turn
implies that H∞ = H(X) and this is enough to conclude both Conjecture 5.1 and
the first statement in Conjecture 5.2, see the sketch of proof of Theorem 3.32).
Note that the second statement of Conjecture 5.7 holds whenever X = R

2
�A R,

since R
2

�A {0} is a properly embedded, strongly stable H(X)-surface.

Conjecture 5.8 (Cheeger Constant Conjecture, Meeks-Mira-Pérez-Ros).
If X is diffeomorphic to R

3
, then Ch(X) = 2H(X).

By Proposition 3.35, if X is of the form R
2

�A R, then Ch(X) = trace(A) =
2 H(X), and so Conjecture 5.8 is known to hold except when X is isomorphic to
�SL(2, R). It is also known to hold in the case of �SL(2, R) with an E(κ, τ)-metric,
since by Theorem 2.14, �SL(2, R) with such a metric is isometric as a Riemannian
manifold the non-unimodular group H

2 × R with some left invariant metric, and
hence it is isometric to some R

2
�A R (Theorem 2.14). Therefore, it remains to

prove Conjecture 5.8 in the case of �SL(2, R) equipped with a left invariant metric
whose isometry group is three-dimensional.

Conjecture 5.9 (CMC Product Foliation Conjecture, Meeks-Mira-Pérez-Ros).

(1) If X is diffeomorphic to R
3
, then given p ∈ X there exists a smooth CMC

product foliation of X − {p} by spheres.

(2) Let F be a CMC foliation of X, i.e., a foliation all whose leaves have

constant mean curvature (possibly varying from leaf to leaf). Then:

(a) F is a product foliation by topological planes.

(b) The mean curvature of the leaves of F is at most H(X).

Since spheres of radius R in R
3 or in H

3 have constant mean curvature, item (1)
of the above conjecture holds in these spaces. By results of Meeks [31] and of Meeks,
Pérez and Ros [38], items (2a-2b) of the above conjecture are also known to hold
when X is R

3 or H
3.

More generally, by work of Meeks, Pérez and Ros [38] on CMC foliations F of
complete, homogeneously regular Riemannian three-manifolds with a given bound
on the absolute sectional curvature (not necessarily a metric Lie group), the supre-
mum ∆ of the mean curvature of the leaves of F is uniformly bounded indepen-
dently of the choice of the CMC foliation F . In the case of a simply-connected,
three-dimensional metric Lie group X, the related supremum ∆(X) can be proven
to be achieved by a complete, strongly stable H-surface with H = ∆(X). Hence,
items (2a-2b) of Conjecture 5.9 would follow from the validity of Conjecture 5.7.
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Regarding item (2) of Conjecture 5.9, note that there are no CMC foliations of
X when X is not diffeomorphic to R

3; to see this, suppose F is a CMC foliation
of a metric Lie group diffeomorphic to S

3. Novikov [50] proved that any foliation
of S

3 by surfaces has a Reeb component C, which is topologically a solid doughnut
with a boundary torus leaf ∂C and the other leaves of F in C all have ∂C as their
limits sets. Hence, all of leaves of F in C have the same mean curvature as ∂C.
By the Stable Limit Leaf Theorem for H-laminations, ∂C is strongly stable. But
an embedded compact, two-sided H-surface in SU(2) is never strongly stable, since
some right invariant Killing field induces a Jacobi function which changes sign on
the surface; see Theorem 5.17 below.

Suppose for the moment that item (1) in Conjecture 5.9 holds and we will point
out some important consequences. Suppose F is a smooth CMC product foliation
of X−{p} by spheres, p being a point in X. Parametrize the space of leaves of F by
their mean curvature; this can be done by the maximum principle for H-surfaces,
which shows that the spheres in F decrease their positive mean curvatures at the
same time that the volume of the enclosed balls by these spheres increases. Thus,
the mean curvature parameter for the leaves of F decreases from ∞ (at p) to some
value H0 ≥ 0. The following argument shows that H0 = H(X) and every compact

H-surface in X satisfies H > H(X): Otherwise there exists a compact, possibly
non-embedded surface S in X such that the maximum value of the absolute mean
curvature function of S is less than or equal to H0. Since S is compact, then S
is contained in the ball enclosed by some leaf Σ of F . By left translating S until
touching Σ a first time, we obtain a contradiction to the usual comparison principle
for the mean curvature, which finishes the argument. With this property in mind,
we now list some consequences of item (1) in Conjecture 5.9.

(1) All leaves of F are stable. To see this, first note that all of the spheres in
F have index one (since the leaves of F bounding balls of small volume
have this property and as the volume increases, the multiplicity of zero as
an eigenvalue of the Jacobi operator of the corresponding sphere cannot
exceed three by Cheng’s theorem [6]). Also note that every function φ in
the nullity of a leaf Σ of F is induced by a right invariant Killing field on
X, and hence,

�
Σ φ = 0 by the Divergence Theorem applied to the ball

enclosed by Σ. In this situation, Koiso [22] proved that the stability of
Σ is characterized by the non-negativity of the integral

�
Σ u, where u is

any smooth function on Σ such that Lu = 1 on Σ (see also Souam [56]).
Since the leaves of F can be parameterized by their mean curvatures, the
corresponding normal part u of the variational field satisfies u > 0 on Σ,
Lu = 1 and

�
Σ u > 0. Therefore, Σ is stable.

(2) The leaves of F are the unique H-spheres in X (up to left translations),
by Corollary 3.30.

If additionally the Alexandrov Uniqueness Conjecture 5.5 holds, then the con-
stant mean curvature spheres in F are the unique (up to left translations) compact
H-surfaces in X which bound regions. Since the volume of these regions is deter-
mined by the boundary spheres, one would have the validity of the next conjecture.

Conjecture 5.10 (Isoperimetric Domains Conjecture, Meeks-Mira-Pérez-Ros).

Suppose X is diffeomorphic to R
3
. Then:
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(1) H(X) = inf{mean curvatures of isoperimetric surfaces in X}.
(2) Isoperimetric surfaces in X are spheres.

(3) For each fixed volume V0, solutions to the isoperimetric problem in X for

volume V0 are unique up to left translations in X.

Recall by Proposition 3.35 that in the case the metric Lie group X is of the
form R

2
�A R for some matrix A ∈M2(R), then item (1) in the previous conjecture

holds.
The next conjecture exemplifies another aspect of the special role that the

critical mean curvature H(X) of X might play in the geometry of H-surfaces in X.

Conjecture 5.11 (Strong Stability Conjecture, Meeks-Mira-Pérez-Ros).
A complete, strongly stable H-surface in X with H = H(X) is a graph with respect

to some Killing field V projection, i.e., the projection of X to the quotient space of

integral curves of V . In particular, if H(X) = 0, then any complete, strongly stable

minimal surface Σ in X is a leaf of a minimal foliation of X and so Σ is actually

homologically area-minimizing in X.

The previous conjecture is closely related to the next conjecture, which in turn
is closely tied to recent work of Daniel, Meeks and Rosenberg [12, 13] on halfspace-
type theorems in simply-connected, three-dimensional metric semidirect products.

Conjecture 5.12 (Strong-Halfspace Conjecture in Nil3, Daniel-Meeks-Rosen-
berg). A complete, strongly stable minimal surface in Nil3 is a graph with respect to

the Riemannian submersion Π : Nil3 → R
2

or it is a vertical plane Π−1(l), where l
is a line in R

2
. In particular, by the results in [13], any two properly immersed dis-

joint minimal surfaces in Nil3 are parallel vertical planes or they are entire graphs

F1, F2 over R
2
, where F2 is a vertical translation of F1.

Conjecture 5.13 (Positive Injectivity Radius, Meeks-Pérez-Tinaglia). A com-

plete embedded H-surface of finite topology in X has positive injectivity radius. Fur-

thermore, the same conclusion holds when H ≤ H(X) under the weaker assumption

of finite genus.

Conjecture 5.13 is motivated by the partial result of Meeks and Pérez [33] that
the injectivity radius of a complete, embedded minimal surface of finite topology in
a homogeneous three-manifold is positive. A related result of Meeks and Peréz [33]
when H = 0 and of Meeks and Tinaglia when H > 0, is that if Y is a complete
locally homogeneous three-manifold and Σ is a complete embedded H-surface in
Y with finite topology, then the injectivity radius function of Σ is bounded on
compact domains in Y . Meeks and Tinaglia (unpublished) have also shown that
the first statement of Conjecture 5.13 holds for complete embedded H-surfaces of
finite topology in metric Lie groups X with four or six-dimensional isometry group.

Conjecture 5.14 (Bounded Curvature Conjecture, Meeks-Pérez-Tinaglia).
A complete embedded H-surface of finite topology in X with H ≥ H(X) or with

H > 0 has bounded second fundamental form. Furthermore, the same conclusion

holds when H = H(X) under the weaker assumption of finite genus.

The previous two conjectures are related as follows. Curvature estimates of
Meeks and Tinaglia [46] for embedded H-disks imply that every complete embedded
H-surface with H > 0 in a homogeneously regular three-manifold has bounded
second fundamental form if and only if it has positive injectivity radius. Hence, if
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Conjecture 5.13 holds, then a complete embedded H-surface of finite topology in
X with H > 0 has bounded curvature.

Conjecture 5.15 (Calabi-Yau Properness Problem, Meeks-Pérez-Tinaglia).
A complete, connected, embedded H-surface of positive injectivity radius in X with

H ≥ H(X) is always proper.

In the classical setting of X = R
3, where H(X) = 0, Conjecture 5.15 was

proved by Meeks and Rosenberg [40] for the case H = 0. This result was based
on work of Colding and Minicozzi [9] who demonstrated that complete embedded
finite topology minimal surfaces in R

3 are proper, thereby proving what is usually
referred to as the classical embedded Calabi-Yau problem for finite topology minimal
surfaces. Recently, Meeks and Tinaglia [43] proved Conjecture 5.15 in the case
X = R

3 and H > 0, which completes the proof of the conjecture in the classical
setting.

As we have already mentioned, Meeks and Pérez [33] have shown that every
complete embedded minimal surface M of finite topology in X has positive injec-
tivity radius; hence M would be proper whenever H(X) = 0 and Conjecture 5.15
holds for X. Meeks and Tinaglia [44] have shown that any complete embedded
H-surface M in a complete three-manifold Y with constant sectional curvature −1
is proper provided that H ≥ 1 and M has injectivity radius function bounded away
from zero on compact domains of in Y ; they also proved that any complete, embed-
ded, finite topology H-surface in such a Y has bounded second fundamental form.
In particular, for X = H

3 with its usual metric, an annular end of any complete,
embedded, finite topology H-surface in X with H ≥ H(X) = 1 is asymptotic to
an annulus of revolution by the classical results of Korevaar, Kusner, Meeks and
Solomon [23] when H > 1 and of Collin, Hauswirth and Rosenberg [10] when
H = 1.

A key step in proving Conjecture 5.15 might be the validity of Conjecture 5.11,
since by the work of Meeks and Rosenberg [40] and of Meeks and Tinaglia [46], if
Σ is a complete, connected, embedded non-proper H-surface of positive injectivity
radius in X with H ≥ H(X), then the closure of Σ has the structure of a weak
H-lamination with at least one limit leaf and the two-sided cover of every limit leaf
of such a weak H-lamination is strongly stable [38, 39].

The next conjecture is motivated by the classical results of Meeks and Yau [48]
and of Frohman and Meeks [16] on the topological uniqueness of minimal surfaces
in R

3 and partial unpublished results by Meeks. By modifications of the arguments
in these papers, this conjecture might follow from the validity of Conjecture 5.11.

Conjecture 5.16 (Topological Uniqueness Conjecture, Meeks). If M1, M2

are two diffeomorphic, connected, complete embedded H-surfaces of finite topology

in X with H = H(X), then there exists a diffeomorphism f : X → X such that

f(M1) = M2.

We recall that Lawson [27] proved a beautiful unknottedness result for minimal
surfaces in S

3 equipped with a metric of positive Ricci curvature. He demonstrated
that whenever M1, M2 are compact, embedded, diffeomorphic minimal surfaces in
such a Riemannian three-sphere, then M1 and M2 are ambiently isotopic. His
result was generalized by Meeks, Simon and Yau [42] to the case of metrics of
non-negative scalar curvature on S

3. The work in these papers and the validity of
Conjecture 5.6 would prove that this unknottedness result would hold for any X
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diffeomorphic to S
3 since the results in [42] imply that the failure of the conjecture

to hold produces a compact, embedded strongly stable two-sided minimal surface
in X, which is ruled out by the next theorem. The reader should note that the
two-sided hypothesis in the next theorem is necessary because there exist strongly
stable minimal projective planes in SU(2)/Z2 for any left invariant metric and many
flat three-tori admit stable non-orientable minimal surfaces of genus 3.

Theorem 5.17. Suppose that Y is a three-dimensional metric Lie group. The

compact, orientable strongly stable H-surfaces in Y are precisely the left cosets of

compact two-dimensional subgroups of Y and furthermore, all such subgroups are

tori which are normal subgroups of Y . In particular, the existence of such strongly

stable compact H-surfaces in Y implies that the fundamental group of Y contains

a subgroup isomorphic to Z× Z.

Before proving Theorem 5.17, we give the following corollary of the previous
discussion.

Corollary 5.18 (Unknottedness Theorem for Minimal Surfaces in SU(2)). Let

X be isomorphic to SU(2) and let M1, M2 be two compact, diffeomorphic embedded

minimal surfaces in X. Then M1 is ambiently isotopic to M2.

The proof of Theorem 5.17. Let M be a compact, two-dimensional sub-
group of Y . Then the left cosets of M give rise to an H-foliation of Y (here H is
the constant mean curvature of M) and so M admits a positive Jacobi function,
which implies that M is strongly stable.

Now suppose that M is a compact, immersed, two-sided strongly stable H
surface in Y . After a left translation suppose that e ∈ M . Let V1, V2 be a pair of
linearly independent, right invariant vector fields in Y which are tangent to M at
e. Since Y and M are both orientable and M is strongly stable, these two Killing
fields must be everywhere tangent to M . It follows that M is a two-dimensional
subgroup of X and so M is a torus.

It remains to prove that M is a normal subgroup of Y . To do this, it suffices
to check that the right cosets of M near M are also left cosets of M . Note that
given a ∈ Y , the right coset Ma lies at constant distance from M . Since M is
compact, there exists an element a ∈ Y − {e} sufficiently close to e so that Ma is
a small normal graph over M that lies in a product neighborhood of M foliated by
left cosets. If Ma is not one of these left cosets in this foliated neighborhood, then
we can choose this neighborhood to be the smallest one with distinct boundary left
cosets, so assume that the second possibility holds. In this case Ma is tangent to
the two boundary surfaces b1M , b2M for some b1, b2 ∈ Y . Since right cosets are left
cosets of a conjugate subgroup, it follows that Ma has constant mean curvature.
The mean curvature comparison principle applied to the points of intersection of Ma
with b1M and of b2M shows that the mean curvature of Ma is equal to the constant
mean curvature of b1M which is equal to the value of the constant mean curvature
of b2M . Therefore, by the maximum principle for H-surfaces, b1M = Ma = b2M ,
which is a contradiction. The theorem is now proved. �

The next conjecture is motivated by the classical case of X = R
3, where it was

proved by Meeks [31], and in the case of X = H
3 with its standard constant −1

curvature metric, where it was proved by Meeks and Tinaglia [44].
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Conjecture 5.19 (One-end / Two-ends Conjecture, Meeks-Tinaglia).
Suppose that M is a connected, non-compact, properly embedded H-surface of finite

topology in X with H > H(X). Then:

(1) M has more than one end.

(2) If M has two ends, then M is an annulus.

The previous conjecture also motivates the next one.

Conjecture 5.20 (Topological Existence Conjecture, Meeks).
Suppose X is diffeomorphic to R

3
. Then for every H > H(X), X admits connected

properly embedded H-surfaces of every possible orientable topology, except for con-

nected finite genus surfaces with one end or connected finite positive genus surfaces

with 2 ends which it never admits.

Conjecture 5.20 is probably known in the classical settings of X = R
3 and H

3

but the authors do not have a reference of this result for either of these two ambient
spaces. For the non-existence results alluded to in this conjecture in these classical
settings see [23, 24, 31, 44]. The existence part of the conjecture should follow
from gluing constructions applied to infinite collections of non-transversely inter-
secting embedded H-spheres appropriately placed in X, as in the constructions of
Kapouleas [20] in the case of X = R

3.
The intent of the next conjecture is to generalize some of the classical results

for complete embedded H-surfaces with H ≥ H(X) of finite topology in X = R
3 or

X = H
3. First of all, we recall that a complete embedded H-surface Σ in X with

finite topology is properly embedded in the following particular cases:
(1) When X = R

3 and H = H(X) = 0 (Colding and Minicozzi).
(2) When X = R

3 and H > 0 (Meeks and Tinaglia).
(3) When X = H

3 and H ≥ H(X) = 1 (Meeks and Tinaglia).
Then, in the above cases for X and for H > H(X), the classical results of Korevaar,
Kusner, Meeks and Solomon [23, 24, 31] for properly embedded H-surfaces of finite
topology give a solution to the next conjecture.

Conjecture 5.21 (Annulus Moduli Space / Asymptotic Conjecture, Große
Brauckmann-Kusner-Meeks). Suppose X is diffeomorphic to R

3
and H > H(X).

(1) Let A(X) be the space of non-congruent, complete embedded H-annuli in

X. Then, A(X) is path-connected.

(2) If the dimension of the isometry group of X is greater than three, then

every annulus in A(X) is periodic and stays at bounded distance from a

geodesic of X.

(3) Suppose that M is a complete embedded H-surface with finite topology in

X. Then, every end of M is asymptotic to the end of an annulus in A(X).

We end our discussion of open problems in X with the following generalization
of the classical properly embedded Calabi-Yau problem in R

3, which can be found
in [15] and [34, 35]. Variations of this conjecture can be attributed to many people
but in the formulation below, it is primarily due to Mart́ın, Meeks, Nadirashvili,
Pérez and Ros and their related work.

Conjecture 5.22 (Embedded Calabi-Yau Problem). Suppose X is diffeomor-

phic to R
3

and Σ is a connected, non-compact surface. A necessary and sufficient

condition for Σ to be diffeomorphic to some complete, embedded bounded minimal

surface in X is that every end of Σ has infinite genus.
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In the case of X = R
3 with its usual metric, the non-existence implication in

the last conjecture was proved by Colding and Minicozzi [9] for complete embedded
minimal surfaces with an annular end; also see the related more general results of
Meeks and Rosenberg [40] and of Meeks, Peréz and Ros [36]. The non-existence
implication in the last conjecture should follow from the next general conjecture.

Conjecture 5.23 (Finite Genus Lamination Closure Conjecture, Meeks-Pérez).

Suppose that M is a complete, embedded non-compact minimal surface with com-

pact boundary in a complete Riemannian three-manifold Y . Then either M−∂M is

a minimal lamination of Y −∂M , or the limit set
17 L(M)−∂M of M is a minimal

lamination of X − ∂M with every leaf in L(M)− ∂M being strongly stable.

The reason that the above conjecture should give the non-existence implication
in Conjecture 5.22 is that it should be the case that every metric Lie group X
diffeomorphic to R

3 admits a product H-foliation F for some H ≥ 0. The existence
of such a foliation F of X and the maximum principle would imply that X cannot
admit a minimal lamination contained in a bounded set of X. Trivially, any X
which can be expressed as a metric semidirect product R

2
�A R admits such a

product H-foliation, namely, the collection of planes {R2
�A {t} | t ∈ R} where

H = 1
2 trace(A) is the mean curvature of these planes.
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[29] M. Manzano, J. Pérez, and M. M. Rodŕıguez. Parabolic stable surfaces with constant mean
curvature. Preprint available at arXiv:0910.5373.

[30] W. H. Meeks III. Constant mean curvature spheres in Sol3. Preprint.
[31] W. H. Meeks III. The topology and geometry of embedded surfaces of constant mean curva-

ture. J. of Differential Geom., 27:539–552, 1988. MR0940118 (89h:53025), Zbl 0617.53007.
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