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1 Preliminaries
1.1 Notation
⋆ Notation

X, Y real or complex Banach spaces

• K base field R or C,

• BX = {x ∈ X : ∥x∥ ⩽ 1} closed unit ball of X,

• SX = {x ∈ X : ∥x∥ = 1} unit sphere of X,

• L(X, Y ) bounded linear operators from X to Y ,

– ∥T∥ = sup{∥T (x)∥ : x ∈ SX} for T ∈ L(X, Y ),

• W(X, Y ) weakly compact linear operators from X to Y ,

• K(X, Y ) compact linear operators from X to Y ,

• FR(X, Y ) bounded linear operators from X to Y with finite rank,

• if Y = K, X∗ = L(X, Y ) topological dual of X,

Observe that
FR(X, Y ) ⊂ K(X, Y ) ⊂ W(X, Y ) ⊂ L(X, Y ).
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1.2 Introducing the topic
⋆ Norm attaining functionals
Norm attaining functionals
x∗ ∈ X∗ attains its norm when

∃ x ∈ SX : |x∗(x)| = ∥x∗∥

⋆ NA(X,K) := {x∗ ∈ X∗ : x∗ attains its norm}

Examples and comments

• dim(X) < ∞ =⇒ NA(X,K) = L(X,K) (Heine–Borel).

• X reflexive ⇐⇒ NA(X,K) = L(X,K) (Hahn–Banach, James).

• NA(c0,K) = c00 ⩽ ℓ1,

• NA(ℓ1,K) =
{

x ∈ ℓ∞ : ∥x∥∞ = maxn{|x(n)|}
}

⊆ ℓ∞, residual, contains c0,

• NA(X,K) can be “wild”, for instance:

– it may contain NO two-dimensional subspaces (Read, 2018; Rmoutil, 2017),
– it can be NOT norm Borel (Kaufman, 1991).

• (Petunin–Plichko 1974; Godefroy 1987): X separable, Z ⩽ X∗ closed,
separating for X, Z ⊆ NA(X,K) =⇒ Z is an isometric predual of X.

⋆ Norm attaining operators
Norm attaining operators
T ∈ L(X, Y ) attains its norm when

∃ x ∈ SX : ∥T (x)∥ = ∥T∥

⋆ NA(X, Y ) := {T ∈ L(X, Y ) : T attains its norm}

Some examples and comments

• dim(X) < ∞ =⇒ NA(X, Y ) = L(X, Y ) for every Y (Heine-Borel),

• dim(X) = ∞ =⇒ NA(X, c0) ̸= L(X, c0) (see M.-Meŕı-Payá, 2006).

• X reflexive ⇐⇒ K(X, Y ) ⊆ NA(X, Y ) for every Y (James).

• L(X, ℓ∞) =
[⊕

n∈N L(X,K)
]

ℓ∞
= ℓ∞(X∗).

NA(X, ℓ∞) =
{

(x∗
n) ∈ ℓ∞(X∗) : ∃k ∈ N, ∥x∗

k∥ = ∥(x∗
n)∥∞, x∗

k ∈ NA(X,K)
}

.

• L(ℓ1, Y ) =
[⊕

n∈N L(K, Y )
]

ℓ∞
= ℓ∞(Y ).

NA(ℓ1, Y ) =
{

(yn) ∈ ℓ∞(Y ) : ∃k ∈ N, ∥yk∥ = ∥(yn)∥∞
}

.

• NA(L1[0, 1], L∞[0, 1])???
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⋆ The problems of denseness of norm attaining functionals and opera-
tors
Problem
Is NA(X,K) always dense in X∗?

Theorem (Bishop–Phelps, 1961)
The set of norm attaining functionals is dense in X∗ (for the norm topology).

Problem
Is NA(X, Y ) always dense in L(X, Y )?

The answer is No, and this is the origin of the study of norm attaining operators.

Modified problem
When is NA(X, Y ) dense in L(X, Y )?

The study of this problem was initiated by J. Lindenstrauss in 1963, who provided the first negative
and positive examples.

2 An overview on “classical” results
2.1 First results: Lindenstrauss
⋆ Lindenstrauss’ seminal paper of 1963
Negative answer

NA(X, Y ) is NOT always dense

Lemma
Y LUR, T : X −→ Y bounded from below (monomorphism).
If T attains its norm, then it does at a strongly exposed point.

Example
X separable without strongly exposed points (e.g. c0, C[0, 1], L1[0, 1]), Y LUR renorming of X.
Then, NA(X, Y ) is not dense in L(X, Y ).

Lemma
If Y is strictly convex, then NA(c0, Y ) ⊆ FR(c0, Y ).

Example
Y strictly convex, Y ⊃ c0. Then, NA(X, Y ) is not dense in L(X, Y ).

⋆ Lindenstrauss properties A and B
Observation

• The question then is for which X and Y the density holds.

• As this problem is too general, Lindenstrauss introduced two properties.

Definition
X, Y Banach spaces,
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• X has (Lindenstrauss) property A iff NA(X, Z) = L(X, Z) ∀ Z

• Y has (Lindenstrauss) property B iff NA(Z, Y ) = L(Z, Y ) ∀ Z

First examples

• If X is finite-dimensional, then X has property A,

• K has property B (Bishop–Phelps theorem),

• c0, C[0, 1], L1[0, 1] fail property A,

• if Y is strictly convex, Y ⊃ c0, then Y fails property B.

⋆ Positive results I
Theorem (Lindenstrauss, 1963)
X, Y Banach spaces. Then{

T ∈ L(X, Y ) : T ∗∗ : X∗∗ −→ Y ∗∗ attains its norm
}

is dense in L(X, Y ).

Observation
Given T ∈ L(X, Y ), there is S ∈ K(X, Y ) such that [T + S]∗∗ ∈ NA(X∗∗, Y ∗∗).

Consequence
If X is reflexive, then X has property A.

An improvement (Zizler, 1973)
X, Y Banach spaces. Then{

T ∈ L(X, Y ) : T ∗ : Y ∗ −→ X∗ attains its norm
}

is dense in L(X, Y ).

⋆ Positive results II
Some examples (using Lindenstrauss’ ideas):

• The following spaces have property A: ℓ1 and all finite-dimensional spaces.

• The following spaces have property B: every Y such that c0 ⊂ Y ⊂ ℓ∞, finite-dimensional
spaces such that the dual unit ball has finitely many extreme points (up to rotation).

• Every finite-dimensional space has property A, but the only known (in the 1960’s) finite-
dimensional real spaces with property B were the polyhedral ones. Only a little bit more is
known nowadays. . .

Positive results, up to renorming:
(Partington, 1982; Schachermayer, 1983; Godun-Troyanski, 1993)

• Every Banach space can be renormed with property B.

• Every Banach space admitting a long biorthogonal system (in particular, separable) can be
renormed with property A.
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2.2 The relation with the RNP: Bourgain
⋆ The Radon-Nikodým property
Definitions
X Banach space.

• X has the Radon-Nikodým property (RNP) if the Radon-Nikodým theorem is valid for X-
valued vector measures (with respect to every finite positive measure).

• C ⊂ X is dentable if it contains slices of arbitrarily small diameter.

• C ⊂ X is subset-dentable (or RNP set) if every subset of C is dentable.

Theorem (Rieffel, Maynard, Huff, David, Phelps, 1970’s)
X RNP ⇐⇒ every bounded C ⊂ X is dentable ⇐⇒ BX RNP set.

Remark
In the book

J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, AMS, Providence, 1977.
there are more than 30 different reformulations of the RNP.

⋆ The RNP and property A: positive results
Theorem (Bourgain, 1977)
X Banach space, C ⊂ X absolutely convex closed bounded subset-dentable, Y Banach space.
Then

{T ∈ L(X, Y ) : the norm of T attains its supremum on C}

is dense in L(X, Y ).
⋆ In particular, RNP =⇒ property A.

Remark
It is actually shown that for every bounded linear operator there are arbitrary closed compact
perturbations of it attaining the norm.

Non-linear Bourgain–Stegall variational principle (Stegall, 1978)
X, Y Banach spaces, C ⊂ X bounded subset-dentable, φ : C −→ Y uniformly bounded such that
x 7−→ ∥φ(x)∥ is upper semicontinuous. Then for every δ > 0, there exists x∗

0 ∈ X∗ with ∥x∗
0∥ < δ

and y0 ∈ SY such that the function x 7−→ ∥φ(x) + x∗(x)y0∥ attains its supremum on C.

⋆ The RNP and property A: negative results
Theorem (Bourgain, 1977)
C ⊂ X separable, bounded, closed and convex,
{T ∈ L(X, Y ) : the norm of T attains its supremum on C} dense in L(X, Y ).
=⇒ C is dentable.

⋆ In particular, if X is separable and has property A =⇒ BX is dentable.

Remark
Lindenstrauss actually showed that if X is separable and has property A
=⇒ BX is the closed convex hull of its strongly exposed points.

A refinement (Huff, 1980)
X Banach space failing the RNP. Then there exist X1 and X2 equivalent renorming of X such
that Id /∈ NA(X1, X2), hence NA(X1, X2) is NOT dense in L(X1, X2).

6



⋆ The RNP and property A: isomorphic characterization
Main consequence
Every renorming of X has property A ⇐⇒ X has the RNP.

Example
ℓ1 has property A in every equivalent norm.

Another consequence
Every renorming of X has property B =⇒ X has the RNP.

Observations

1. The converse of the implication above is NOT TRUE (Gowers, 1990)

2. To get an equivalence, a weaker property is needed, quasi norm attainment
(to be seen latter).

2.3 Counterexamples for property B
⋆ Counterexamples for property B
Observation
It was an open question in the 1980’s whether RNP =⇒ property B

Counterexamples: spaces which fail property B

• ℓp, 1 < p < ∞ (Gowers, 1990).

• every infinite-dimensional strictly convex space (Acosta, 1999).

• ℓ1 (Acosta, 1999).

• ℓp-sums of finite-dimensional spaces, 1 < p < ∞ (Fovelle, 2024).

Consequence
Y separable, every renorming of Y has property B =⇒ Y is finite-dimensional

On the converse. . .

• We do not know if finite-dimensional spaces have property B.

• (Acosta-Aguirre-Payá, 1996): there are some non polyhedral finite-dimensional spaces with
property B.

2.4 Some results on classical spaces
⋆ Some classical spaces: positive results
Example (Johnson-Wolfe, 1979)
In the real case, NA(C(K1), C(K2)) is dense in L(C(K1), C(K2)).

Example (Iwanik, 1979)
NA(L1(µ), L1(ν)) is dense in L(L1(µ), L1(ν)).

Example (Schachermayer, 1983)
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For every compact space K, for every Banach space Y :

W(C(K), Y ) = NA(C(K), X) ∩ W(C(K), Y )

Consequence (Schachermayer, 1983)
NA(C(K), Lp(µ)) is dense in L(C(K), Lp(µ)) for 1 ⩽ p < ∞.

Example (Finet-Payá, 1998)
NA(L1[0, 1], L∞[0, 1]) is dense in L(L1[0, 1], L∞[0, 1]).

⋆ Some classical spaces: negative results
Example (Schachermayer, 1983)
NA(L1[0, 1], C[0, 1]) is NOT dense in L(L1[0, 1], C[0, 1]).

Consequence
C[0, 1] does not have property B and it was the first “classical” example.

Example (Uhl, 1976)

• If Y has the RNP, then NA(L1[0, 1], Y ) is dense in L(L1[0, 1], Y ).

• If Y is strictly convex and NA(L1[0, 1], Y ) is dense in L(L1[0, 1], Y ), then Y has the RNP.

2.5 Compact operators
⋆ The question of norm attainment for compact operators
Question (open from 1970’s till 2014)
Can every compact operator be approximated by norm attaining operators?

Observations

• In all the negative examples of the previous sections, the authors constructed NON COM-
PACT operators which cannot be approximated by norm attaining ones.

• Actually, the idea of the proofs is to use that the operator which is not going to be approxi-
mated is not compact or, even, it is an isomorphism.

• In most examples, it was even known that compact operators attaining the norm are dense.

⋆ Positive results on norm attaining compact operators
Positive results

• If X is reflexive, then ALL compact operators from X into Y are norm attaining. (Indeed,
compact operators carry weak convergent sequences to norm convergent sequences.)

• Some classical spaces (Johnson–Wolfe, 1979):

– X = C0(L) or X = L1(µ), Y arbitrary;
– X arbitrary, Y = L1(µ) (only real case) or Y ∗ ≡ L1(µ);
– X arbitrary, Y ⩽ c0 with AP.

• More recent results:

– (Cascales–Guirao–Kadets, 2013) X arbitrary, Y uniform algebra;
– (M. 2014) X∗ = ℓ1, Y arbitrary.
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⋆ The solution
Negative answer (M. 2014)
There are compact operators which cannot be approximated by norm attaining ones

Ideas

• (Extending Lindenstrauss) X ⩽ c0, Y strictly convex =⇒ NA(X, Y ) ⊂ FR(X, Y ).

• (Enflo) There is X ⩽ c0 such that X∗ fails the approximation property.

• There is Y sc and T : X −→ Y compact not approx. by finite-rank operators.

• K(X, Y ) is not contained in NA(X, Y ) ⊂ FR(X, Y )

Example
There is X ⩽ c0 with Schauder basis and Y such that
K(X, Y ) is not contained in NA(X, Y ).

⋆ Some interesting open problems, to be (partially) solved here!
Problem 1
Relate the RNP of the range space and the denseness of norm attaining operators.

• The usual norm attainment notion does not work. . .

• Introduce a new notion?

Problem 2
Find isometric characterizations of Lindenstrauss property A (in the separable case).

• Improve the necessary conditions.

• Check whether they are sufficient somewhere.

Problem 3
Does every finite-dimensional Banach space satisfy Lindenstrauss property B?
Equivalently, are finite-rank operators always approachable by norm attaining ones?

• We do not even know if there is X such that every non-zero element
of NA(X, ℓ2) is of rank one. . .
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⋆ “Other” open problems
Problem 4 (Ostrovskii)
Does there exist an infinite-dimensional X such that NA(X, X) = L(X, X)?

• Please, attend Dantas’ talk!

Problem 5
Does every dual space satisfy Lindenstrauss property A?

• Separable dual spaces have the RNP.

• What’s about ℓ∞ or JT ∗?

Problem 6
Find necessary conditions for Lindenstrauss property B.

• Lindenstrauss’ ones are not usable.

• They should be on smoothness properties. . .

Problem 7 (new “classical” spaces)
For which M1, M2, NA(F(M1), F(M2)) is dense in L(F(M1), F(M2))?

3 The RNP and range spaces: quasi norm-attainment
3.1 Quasi norm attainment
⋆ A weaker notion of norm attainment
Quasi norm attaining bounded linear operator (Godefroy, 2015; CCJM, 2022)
T ∈ L(X, Y ) quasi attains its norm (T ∈ QNA(X, Y )) if there exists (xn) ⊂ BX

such that Txn −→ y ∈ ∥T∥SY .

• We say T quasi attains its norm towards y.

• Equivalently, T (BX) ∩ ∥T∥SY ̸= ∅ (T ∈ NA(X, Y ) ⇐⇒ T (BX) ∩ ∥T∥SY ̸= ∅)

First remarks
NA(X, Y ) ⊂ QNA(X, Y ) K(X, Y ) ⊂ QNA(X, Y ).

First positive examples
All pairs (X, Y ) for which NA(X, Y ) is dense or L(X, Y ) = K(X, Y ).

Negative example 1 (Godefroy, 2015)
Y renorming of c0 with the Kadets–Klee property =⇒ QNA(c0, Y ) ̸= L(c0, Y ).
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⋆ Negative results
Remarks

• T ∈ QNA(X, Y ), T (BX) closed (for instance, T monomorphism)
=⇒ T ∈ NA(X, Y ).

• Hence, if there is T ∈ L(X, Y ) monomorphism, T /∈ NA(X, Y )
=⇒ QNA(X, Y ) ̸= L(X, Y ).

Example 2 (improving a result by Johnson–Wolfe)
There exists S such that QNA(L1[0, 1], C(S)) is not dense in L(L1[0, 1], C(S)).

Example 3 (improving a result by Bourgain–Huff)
X failing RNP =⇒ there exist X1, X2 isomorphic to X such that Id /∈ NA(X1, X2),
hence QNA(X1, X2) is not dense in L(X1, X2).

3.2 The relation with the RNP of the range space
⋆ RNP of the range space
Theorem
T ∈ L(X, Y ), T (BX) RNP set, ε > 0. There exists S ∈ QNA(X, Y ) such that:

• ∥T − S∥ < ε, T − S is of rank-one

• moreover, there is z0 ∈ S(BX) ∩ ∥S∥SY such that whenever (xn) ⊆ BX satisfies that
∥Sxn∥ −→ ∥S∥, we may find a sequence (θn) ⊆ T such that S(θnxn) −→ z0; in particu-
lar, there is θ0 ∈ T and a subsequence (xσ(n)) of (xn) such that Sxσ(n) −→ θ0z0.

Tool: Bourgain–Stegall non-linear optimization principle
Suppose D is a bounded RNP set of a Banach space Y and ϕ : D −→ R is upper semicontinuous
and bounded above. Then, the set

{y∗ ∈ Y ∗ : ϕ + Re y∗ strongly exposes D}

is a dense Gδ subset of Y ∗.
⋆ D := T (BX) and ϕ(y) = ∥y∥.

⋆ Consequences I
Corollary
If X or Y has the RNP, then QNA(X, Y ) is dense in L(X, Y ).

• The case of X having RNP needs Bourgain’s result.

• The case of Y having RNP is the new one and it is false for NA.

Corollary
QNA(X, Y ) ∩ W(X, Y ) is always dense in W(X, Y ).

Examples 1. There are many examples of pair of spaces (X, Y ) for which QNA(X, Y ) is dense
while NA(X, Y ) is not. For instance:

• There exists G such that NA(G, ℓp) is not dense for 1 < p < ∞,
while QNA(X, ℓp) is dense for every X.
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⋆ Consequences II. Characterizing the RNP
Corollary
Z Banach space. TFAE:

(a) Z has the RNP.

(b) QNA(Z ′, Y ) is dense in L(Z ′, Y ) for every Banach space Y
and every equivalent renorming Z ′ of Z.

(c) QNA(X, Z ′) is dense in L(X, Z ′) for every Banach space X
and every equivalent renorming Z ′ of Z.

Remarks
• (a) ⇐⇒ (b) is true for NA,

• (c) =⇒ (a) is true for NA,

• but (a) =⇒ (c) is FALSE for NA, as shown by Gowers.

⋆ Characterizing properties using QNA
The idea is to discuss when each of the inclusions in the chain

NA(X, Y ) ⊆ QNA(X, Y ) ⊆ L(X, Y )
is an equality.
NA(X, Y ) = QNA(X, Y )
For a Banach space X, TFAE:

• X is reflexive,

• NA(X, Y ) = QNA(X, Y ) for every Y ,

• exists Y ̸= {0} such that NA(X, Y ) = QNA(X, Y ).

QNA(X, Y ) = L(X, Y )
• dim(X) = ∞ =⇒ L(X, c0) \ QNA(X, c0) ̸= ∅.

• dim(Y ) = ∞ =⇒ L(ℓ1, Y ) \ QNA(ℓ1, Y ) ̸= ∅.
⋆ Read as follows: there is K ⊆ BY absolutely convex closed
with sup

k∈K
∥k∥ = 1 but K ∩ SY = ∅ (M.–Rao, 2010; Veselý, 2009).

3.3 Weak-star quasi norm attainment
⋆ Weak-star quasi norm attainment
Weak-star quasi norm attaining bounded linear operator (CJKM, 2024)
T ∈ L(X, Y ∗) weak-star quasi attains its norm (T ∈ w∗-QNA(X, Y ∗)) if

T (BX) w∗

∩ ∥T∥SY ∗ ̸= ∅

The notion depends on the predual
w∗-QNA(c0, c∗

0) ̸= w∗-QNA(c0, c∗)

Main result
For every X and Y , the set w∗-QNA(X, Y ∗) is (norm) dense in L(X, Y ∗).

Example
There is Y such that QNA(c0, Y ∗) is not dense in L(c0, Y ∗).
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3.4 Open problems
⋆ Some related open problems
Open problem (Ostrovskii, 2005)
Does there exist X infinite-dimensional with NA(X, X) = L(X, X) ?

• The only possible candidates for X are separable reflexive spaces without one-complemented
subspaces with the AP (please, attend Dantas’ talk!).

Open problem 1
Does there exist X infinite-dimensional with QNA(X, X) = L(X, X) ?

Some remarks

• If X is reflexive, the two problems are the same.

• As K(X, X) ⊆ QNA(X, X), one may think in testing spaces with
“very few operators” (i.e. L(X, X) =

{
λId + S : λ ∈ K, S ∈ K(X, X)

}
).

• But if T = λId + S with λ ̸= 0 and S ∈ K(X, X) belongs to QNA(X, X),
then T ∈ NA(X, X).

Open problem 2
Suppose that X satisfies that QNA(X, Y ) is dense for every Y (property quasi A),
does X satisfy (Lindenstrauss) property A?

⋆ For property B the result is false!

4 Property A and residuality of norm attaining things
4.1 A new necessary condition on property A
⋆ Definitions
Definition 1: strong exposition
C ⊂ X bounded. x0 ∈ C is strongly exposed if there is x∗ ∈ X∗ such that whenever {xn} ⊂ C
satisfies Re x∗(xn) −→ sup Re x∗(C), then {xn} −→ x0.
Equivalently, the slices of C defined by x∗ contain x0 and are arbitrarily small.

• In this case, we say that x∗ strongly exposes C (at x0).

• str-exp(C) set of strongly exposed points of C.

• SE(C) functionals which strongly expose C at some (strongly exposed) point.

• SE(C) is a Gδ subset of X∗.

C

x0

a

b

For the case C = BX . . .
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• If SE(BX) is dense, NA(X,K) is residual.

• Šmulyan’s test:
x∗ ∈ SE(BX) ⇐⇒ the norm of X∗ is Fréchet-differentiable at x∗

⋆ Lindenstrauss’s and Bourgain’s necessary conditions vs a new one
Lindenstrauss, 1963
If X admits a LUR renorming and has property A
=⇒ BX is the closed convex hull of str-exp(BX).

Bourgain, 1977
C ⊆ X separable bounded closed convex such that for every Y the set{

T ∈ L(X, Y ) : ∃ max
x∈C

∥Tx∥
}

is dense in L(X, Y ) (C has the Bishop–Phelps property in Bourgain’s terminology)
=⇒ C is dentable (i.e. C contains slices of arbitrarily small diameter).

Jung-M.-Rueda, 2023
X admitting a LUR renorming, C ⊆ X bounded with the Bishop–Phelps property
=⇒ SE(C) dense in X∗ (hence C = conv

(
str-exp(C)

)
).

⋆ In particular, X separable with property A
=⇒ SE(BX) is dense in X∗, hence NA(X,K) is residual.

⋆ Sketch of the proof of a particular case
Our result (particular case)
X admitting a LUR renorming, X with property A =⇒ SE(BX) is dense in X∗.

Lemma
S : X −→ Y monomorphism, Y LUR, x0 ∈ SX such that ∥S∥ = ∥Sx0∥.
Then, x0 is strongly exposed by S∗y∗ for every y∗ ∈ SY ∗ with Re y∗(Sx0) = ∥S∥.

• Consider a LUR norm ||| · ||| on X and let Y = (X, ||| · |||) ⊕2 K which is LUR.

• For x∗ ∈ SX∗ , define Tn ∈ L(X, Y ) by Tn(x) = (n−1x, x∗(x)), which are monomorphisms,
and S ∈ L(X, Y ) by S(x) = (0, x∗(x)). Observe {Tn} −→ S.

• We may find monomorphisms Sn ∈ NA(X, Y ), ∥Sn∥ = 1, such that {Sn} −→ S.

• By the lemma, there are y∗
n = (x∗

n, λn) ∈ Y ∗ = X∗ ⊕2 K such that S∗
ny∗

n ∈ SE(BX) and
∥S∗

ny∗
n∥ = ∥Sn∥ = 1.

• Suppose λn −→ λ0 and observe

∥λ0x∗ − S∗
ny∗

n∥ = ∥λ0x∗ − (λnx∗ − S∗y∗
n) − S∗

ny∗
n∥ ⩽ |λ0 − λn| + ∥S∗ − S∗

n∥ −→ 0.

• As λ0 ̸= 0, x∗ = λ−1
0 (λ0x∗) ∈ λ−1

0 SE(BX) = SE(BX).
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⋆ An interesting example
Example
The Lipschitz-free space on the Euclidean unit circle, F(T), satisfies:

• SE
(
BF(T)

)
is not dense in F(T)∗ ≡ Lip0(T,R) (C-GL-M-RZ, 2021),

• hence, by the new result, F(T) fails Lindenstrauss property A.

• On the other hand, BF(T) = conv
(
str-exp(BF(T))

)
(C-GL-M-RZ, 2021)

(so it satisfies Lindenstrauss necessary condition for property A).

4.2 Sufficiency of the necessary condition?
⋆ The RNP and absolutely strongly exposing operators
Definition (Bourgain, 1977)
T ∈ L(X, Y ) is absolutely strongly exposing (T ∈ ASE(X, Y )) iff there exists x0 ∈ SX such that
whenever {xn} ⊂ BX satisfies ∥T (xn)∥ −→ ∥T∥ then ∃{θn} ⊂ T for which {θnxn} −→ x0.

⋆ ASE(X, Y ) is a Gδ-set. Therefore, if ASE(X, Y ) is dense, NA(X, Y ) is residual.

Bourgain, 1977
X RNP, Y arbitrary =⇒ ASE(X, Y ) is dense.

Much more: the non-linear Bourgain-Stegall variational principle (Stegall, 1978)
C ⊂ X bounded RNP set, φ : C −→ R bounded upper semicontinuous.
Then, the set {

x∗ ∈ X∗ : φ + Re x∗ strongly exposed C
}

is residual in X∗.

⋆ Some comments and questions (I)
Observation (Chiclana–GarćıaLirola–M.–RuedaZoca, 2021)
ALL known sufficient conditions for property A actually imply that absolutely strongly exposing
operators are dense:

• RNP,

• properties α and quasi-α,

• BX = conv(A), A uniformly strongly exposed.

This is a consequence of the following lemma. . .
If T ∈ L(X, Y ) attains its norm at an element of str-exp(BX), then T ∈ ASE(X, Y ).

Open problem 1 (still open)
Does the property A of X imply that ASE(X, Y ) is dense for every Y ?

⋆ Some comments and questions (II)
Observation
If ASE(X, Y ) is dense for some Y =⇒ SE(BX) is dense.

Open problem 2 (still open)
Does the denseness of SE(BX) imply that ASE(X, Y ) is dense for every Y ?
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⋆ Some comments and questions (III)
Less ambitious question
If SE(BX) is dense, for which Y s is ASE(X, Y ) dense?

Examples of when SE(BX) is dense

• If X has RNP,

• If X has property A and admits a LUR renorming,

• If X is LUR (a property which is not known to imply property A),

• If str-exp(BX) = SX (a property which is not known to imply property A),

• X = JT ∗ (the dual of the James-tree space, not known if it has property A).

The objective
To find spaces Y which are not known to have property B such that ASE(X, Y ) is dense whenever
SE(BX) is dense.

⋆ A family of new examples. The general result
Theorem
X, Y Banach spaces, I(X, Y ) ⩽ L(X, Y ) containing rank-one operators. Suppose:

• SE(BX) is dense,

• there is {y∗
n} ⊂ SY ∗ such that the set A = {T ∈ I(X, Y ) : ∥T∥ = ∥T ∗y∗

n∥ for some n ∈ N} is
residual in I(X, Y ).

Then, ASE(X, Y ) ∩ I(X, Y ) is dense in I(X, Y ).

Idea of the proof:

• The set B = {T ∈ I(X, Y ) : T ∗y∗
n ∈ SE(BX) ∀n ∈ N} is residual.

Lemma
T ∈ L(X, Y ), y∗ ∈ SY ∗ with T ∗y∗ ∈ SE(BX), ∥T ∗y∗∥ = ∥T∥, then there is x0 ∈ str-exp(BX) such
that |[T ∗y∗](x0)| = ∥Tx0∥ = ∥T∥, so T ∈ ASE(X, Y ).

• A ∩ B is residual and contained in ASE(X, Y ) ∩ I(X, Y ).

⋆ Consequences I
Consequence 1
SE(BX) dense, Y ∗ RNP with str-exp(BY ∗) countable up to rotations. Then:

ASE(X, Y ) dense in L(X, Y ), ASE(X, Y ) ∩ K(X, Y ) dense in K(X, Y ).

This result applies to. . .

• Y being a predual of ℓ1,

• Y being finite-dimensional such that ext (BY ∗) is countable (up to rotation),

• Y = lip0(M) when M is a countable compact metric space.
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Consequence 2
SE(BX) dense, Y RNP with str-exp(BY ) countable up to rotations. Then:

ASE(X, Y ∗) dense in L(X, Y ∗), ASE(X, Y ∗) ∩ K(X, Y ∗) dense in K(X, Y ∗).

This result applies to. . .

• Y = F(M) (so Y ∗ = Lip0(M)) when M is a countable proper metric space.

⋆ Consequences II
Consequence 3
SE(BX) dense, Y such that every separable subspace of Y admits a countable James boundary.
Then:

ASE(X, Y ) ∩ K(X, Y ) dense in K(X, Y ).

This result applies to. . .

• Y polyhedral (real) Banach space,

• Y closed subspace of (the real or complex space) C(K) where K is a Hausdorff scattered
compact space.

(no separability condition is needed!)

⋆ A second family of new examples. The general result
Theorem
X, Y Banach spaces, I(X, Y ∗) ⩽ L(X, Y ∗) containing rank-one operators. Suppose:

• SE(BX) is dense,

• Y has the RNP and str-exp(BY ) is discrete up to rotations
(i.e. for every sequence {yn} of elements of str-exp(BY ) converging to an element y0 ∈
str-exp(BY ), there is a sequence {θn} ⊂ T such that yn = θny0 for large n).

Then, ASE(X, Y ∗) ∩ I(X, Y ∗) is dense in I(X, Y ∗).
Idea of the proof:

• We use Stegall variational principle in L(Y, X∗) ≡ L(X, Y ∗).

• We use Bourgain’s ideas, the discreteness hypothesis, and the residuality of SE(BX), to get
operators T : Y −→ X∗ and norm-one elements y such that ∥Ty∥ = ∥T∥ and Ty ∈ SE(BX).

• The (pre)adjoints of these operators attains their norms at strongly exposed points of BX .
Hence, they belong to ASE(X, Y ∗).

⋆ A second family of new examples. Consequence
Consequence 4
SE(BX) dense, Y RNP with str-exp(BY ) discrete up to rotations. Then:

ASE(X, Y ∗) dense in L(X, Y ∗), ASE(X, Y ∗) ∩ K(X, Y ∗) dense in K(X, Y ∗).

This result applies to. . .

• Y = F(M) (hence Y ∗ = Lip0(M)) when M is a discrete metric space.
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4.3 Open problems
⋆ Some related open problems
Open problem 1
Does Lindenstrauss property A always imply that SE(BX) is dense in X∗?

• If YES, then ℓ∞ would be a dual space failing property A.

• If NO, then for “big” spaces, property A behaves different than for separable ones. . .

Open problem 2
Does the denseness of SE(BX) imply that ASE(X, Y ) is dense for every Y ?
Or, at least, that X has property A?

Open problem 3
Find conditions on Y to get that ASE(X, Y ) is dense whenever SE(BX) is:

• Y finite-dimensional?

• Y Asplund?

• Y = Z∗ with Z RNP?

5 Finite-rank operators
⋆ Preliminaries
Recall (M. 2014)
There are compact operators which cannot be approximated by norm attaining ones.

Open problem
Can finite-rank operators be always approached by norm attaining (finite-rank) ones?

Remark
If we look for properties allowing to approximate compact operators by norm attaining finite-rank
ones, we need some kind of approximation property.

⋆ This is the “classical” approach from the 1970’s

New ideas
We prefer to separate the problem of approximate compact operators (which cannot be always
done) from the problem of approximate finite-rank operators (which is open).

5.1 “Classical” sufficient conditions to get density
⋆ Denseness of norm attaining finite-rank operators: first results
Notation
X, Y Banach spaces,

FRNA(X, Y ) := FR(X, Y ) ∩ NA(X, Y )
set of finite-rank norm attaining operators.

Property A
If X has property A, then FR(X, Y ) ⊂ FRNA(X, Y ):

• X RNP.
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• Other geometrical properties (property α, quasi-α,. . . )

• Every separable Banach space can be renormed to have this property.

Open problem
Does property B of Y imply that FR(X, Y ) ⊂ FRNA(X, Y ) for every X?

⋆ Denseness of norm attaining finite-rank operators: approximation prop-
erties
For domain spaces (Johnson-Wolfe, 1979)
X Banach space. Suppose that there is a net (Pα) of finite-rank norm-one projections on X such
that (P ∗

αx∗) −→ x∗ in norm ∀x∗ ∈ X∗.
Then, K(X, Y ) = FRNA(X, Y ) for every Y .

Idea of the proof

• (TPα) −→ T for every T ∈ K(X, Y )

• TPα ∈ FRNA(X, Y ) as Pα(X) is finite-dimensional and BPα(X) = Pα(BX).

It applies to. . .

• X = C(K), X = C0(L), and X = L1(µ).

• X∗ ≡ ℓ1 and X subspace of c0 with monotone Schauder basis (M., 2014).

For range spaces (Johnson–Wolfe, 1979)
Suppose that every finite-dimensional subspace of Y is contained in a polyhedral finite-dimensional
subspace of Y . Then, RF(X, Y ) ⊂ FRNA(X, Y ) for every X.

Idea of the proof

• T ∈ FR(X, Y ) can be view as T ∈ L(X, F ) with F polyhedral

It applies to. . .
Y ∗ ≡ L1(µ), Y = L1(µ) (only real case), Y polyhedral with the AP.

5.2 New sufficient conditions to get density
⋆ A new condition: lineability of norm attaining functionals
Theorem (KLMW, 2020)
X Banach space. Suppose that given x∗

1, . . . , x∗
n ∈ X∗ and ε > 0, there are z∗

1 , . . . , z∗
n ∈ X∗ such

that ∥x∗
i − z∗

i ∥ < ε and
span

{
z∗

1 , . . . , z∗
n

}
⊂ NA(X,K).

Then, FR(X, Y ) ⊂ FRNA(X, Y ) for every Y .

Idea of the proof

• Write T ∈ FR(X, Y ) as a finite-sum T =
∑

x∗
i ⊗ yi.

• Take {z∗
i } of the hypothesis and consider S =

∑
z∗

i ⊗ yi.

• Then, T ∼ S and S∗(Y ∗) = [ker S]⊥ ⊂ span{z∗
i } ⊂ NA(X,K).
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• S ∈ NA(X, Y ) by the following lemma. . .

Lemma
T : X −→ Y , exists y∗ ∈ SY ∗ such that ∥T ∗y∗∥ = ∥T∥ and T ∗y∗ ∈ NA(X,K),
then T ∈ NA(X, Y ).

It applies to. . .

• All cases covered by Johnson–Wolfe result (X = C0(L), X = L1(µ), X∗ ≡ ℓ1. . . )

• When NA(X,K) is a linear subspace:

– X = K(ℓ2, ℓ2);
– X being a c0-sum of reflexive spaces;
– X being a proximinal finite-codimensional subspace of c0 or of K(ℓ2, ℓ2).

5.3 Existence of rank-two norm attaining operators
⋆ Getting finite-rank norm attaining operators
Open problem
X, Y Banach spaces, dim(Y ) ⩾ 2, does there exist T ∈ FRNA(X, Y ) with rank-two?

Notation
X, Y Banach spaces, NA(2)(X, Y ) :=

{
T ∈ NA(X, Y ) : T of rank-two

}
.

Remark
If Y is not strictly convex NA(2)(X, Y ) ̸= ∅ ∀X (put a copy of Bℓ2

∞
into BY ).

Remark
NA(2)(X, ℓ2) ̸= ∅ =⇒ NA(2)(X, Y ) ̸= ∅ when dim(Y ) ⩾ 2 (using transitivity of ℓ2

2).

Open problem
Does there exists X (with dim(X) ⩾ 2) such that NA(2)(X, ℓ2) = ∅?
Observe that in this case, NA(X, ℓ2

2) would be not dense!!

⋆ Sufficient conditions to get NA(2)(X, ℓ2) ̸= ∅
Condition 1 (folklore)
If there is a norm-one rank-two projection P : X −→ X, then NA(2)(X, ℓ2) ̸= ∅.
⋆ Take S ∈ L(P (X), ℓ2) = NA(P (X), ℓ2) of rank-two and use that P (BX) = BP (X)

to get that SP ∈ NA(2)(X, ℓ2).

But. . . (Bosznay–Garay, 1986)
There are Banach spaces for which every norm-one projections is either of rank one or the identity.

Condition 2 (folklore)
If X contains a proximinal subspace Z of codimension two, then NA(2)(X, ℓ2) ̸= ∅.
⋆ Take S ∈ L(X/Z, ℓ2) of rank-two and use that qZ(BX) = BX/Z by proximinality
to get that SqZ ∈ NA(2)(X, ℓ2).

But. . . (Read, 2018, solving an open question by Singer of the 1970’s)
There are Banach spaces with no proximinal subspaces of codimension two
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⋆ Sufficient conditions to get NA(2)(X, ℓ2) ̸= ∅ II
Condition 3 (folklore)
If NA(X,K) contains a two-dimensional subspace W , then NA(2)(X, ℓ2) ̸= ∅.
⋆ Take S̃ ∈ L(X/W⊥, ℓ2) of rank-two and write S = S̃qW⊥ ; then S is rank-two
and S∗ ∈ NA(ℓ2, X∗) with S∗(ℓ2) ⊂ W = (W⊥)⊥ ⊂ NA(X,K).

Lemma
T : X −→ Y , exists y∗ ∈ SY ∗ such that ∥T ∗y∗∥ = ∥T∥ and T ∗y∗ ∈ NA(X,K),
then T ∈ NA(X, Y ).

But. . . (Rmoutil, 2017; solving an open question by Godefroy from 2000)
The Read’s space R satisfies that NA(R,R) contains no two-dimensional subspace.

What can we do next??

⋆ Sufficient conditions to get NA(2)(X, ℓ2) ̸= ∅ III
Remark
Read’s space R (and other constructions with the same property) are not smooth.

⋆ Therefore, taking f1, f2 ∈ SX∗ linearly independent and x0 ∈ SX such that f1(x0) =
f2(x0) = 1, we get that the operator S(x) = (f1(x), f2(x)) from X to ℓ2

2
is onto and norm attaining.

Debs–Godefroy–SaintRaymond, 1995
Given X separable, there exists Z smooth renorming of X such that NA(X,K) = NA(Z,K).

Smooth a posteriori Read spaces
There are smooth spaces X for which NA(X,K) has not two-dimensional subspaces.

However. . .
For the smooth Read spaces above, NA(X,K) contains non-trivial cones.

⋆ Sufficient conditions to get NA(2)(X, ℓ2) ̸= ∅ IV
Kadets–López–M.–Werner, 2000
X Banach space, if NA(X,K) containing non-trivial cones, then NA(2)(X, ℓ2) ̸= ∅.

A simpler proof using ideas from Cabello brothers

1. (Cabello–Cabello) For any two-dimensional space Z, the elements in SZ at which a non-
degenerate ellipsoid contained in BZ touch SZ are dense in SZ .

2. As NA(X,K) contains non-trivial cones, there is a two-dimensional subspace Z for which
NA(X,K) ∩ SZ has non-empty interior.

3. Hence, there is a non-degenerate ellipsoid contained in BZ touching SZ at an element of
NA(X,K) ∩ SZ .

4. This ellipsoid define an injective S ∈ L(ℓ2
2, X∗) satisfying that ∥S∥ = 1 = ∥Sw0∥ with

Sw0 ∈ NA(X,K).

5. Hence, T := S∗|X ∈ L(X, ℓ2
2) is onto and T ∗ = S, so T ∈ NA(2)(X, ℓ2

2).

Open problem??
To get a possible counterexample, we have to eliminate cones from NA(X,K).
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⋆ Al ultimate example
Example
There is a Banach space X such that NA(X,R) does not contain non-trivial cones. Moreover:

• For every Z ⩽ X∗ of dimension two, NA(X,R) ∩ SZ contains, at most, four points.

• Given two linearly independent elements f1, f2 ∈ NA(X,R), no other element in the segment
between f1 and f2 belongs to NA(X,R).

M. Mart́ın.
A Banach space whose set of norm attaining functionals is algebraically trivial
Preprint (2024), https://arxiv.org/abs/2406.07273

The proof is similar to the construction of Read norms given in

V. Kadets, G. López, M. Mart́ın, and D. Werner
Equivalent norms with an extremely nonlineable set of norm attaining functionals
J. Inst. Math. Jussieu (2020)

applied to a smooth renorming X of c0 with NA(X,R) = c00 ⩽ X∗, using an ℓ1-sum of smooth
renorming of ℓ1 whose duality is “asymptotically” the one of (ℓ1, ℓ∞).

5.4 Open problems
⋆ Open problems
Problem 1
Does every finite-dimensional Banach space satisfy Lindenstrauss property B?
Equivalently, are finite-rank operators always approachable by norm attaining ones?

Problem 2 (The most irritating one according to Johnson–Wolfe)
Is NA(X, ℓ2

2) dense in L(X, ℓ2
2) for every X?

Problem 3
We do not even know if there is X such that NA(2)(X, ℓ2) = ∅.

Problem 4
Is NA(2)(X, ℓ2) empty? If not, is FRNA(X, ℓ2) dense in K(X, ℓ2)?

⋆ Open problems II
Problem 5
Find conditions on X to assure that FR(X, ℓ2) ⊂ FRNA(X, ℓ2) or, at least,
that NA(2)(X, ℓ2) ̸= ∅.

Idea

• A positive answer to the second question implies that there is a two-dimensional subspace
Z of X∗ whose intersection with NA(X,R) contains an “inner point” (that is, an element in
SZ at which a non-degenerate ellipsoid contained in BZ touch SZ).

• Everything would be easier if NA(X,R) and the set of inner points were residual,
but:

– NA(X,R) is residual in many cases (X LUR. . . )
– The set of inner points can be not residual (Cabello, private communication). . .
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