Introducción a los Proyectos Genoma

7. La era postgenómica

Enrique Iañez Pareja

Depto. de Microbiología e Instituto de Biotecnología

Universidad de Granada (España)

 

7. LA ERA POSTGENÓMICA: LA PRÓXIMA REVOLUCIÓN DE LA BIOLOGÍA

Desde el punto de vista de la práctica de la biología básica, el proyecto genoma está acentuando un par de tendencias que ya se dejaban sentir en los últimos años: por un lado la necesidad de formar nuevos tipos de biólogos capaces de tender puentes entre varias disciplinas, que se muevan con comodidad en un entorno de ordenadores, autopistas de información y gigantescas bases de datos e imágenes; y por otro lado, la reorganización de los laboratorios e institutos de investigación, donde interaccionen especialistas en diversos ámbitos de las Ciencias de la Vida, matemáticos, informáticos, químicos, etc.

No hay que olvidar que lo que entendemos por Proyecto Genoma consiste en principio en la obtención de información estructural más o menos en bruto, pero lo realmente importante empieza después (en realidad, simultáneamente): dar sentido biológico, tanto funcional como evolutivo a tal cúmulo de información, es decir, extraer auténtico conocimiento. La "orgía de datos" que se nos viene encima habrá de ser "digerida" adecuadamente, impulsando nuevos avances a base de sugerir nuevos enfoques, nuevos experimentos, renovadas hipótesis de trabajo, todo ello retroalimentándose en un "circulo virtuoso" que abrirá las puertas de una nueva era en las Ciencias Biológicas. Se habla por ello de una "Era Postgenómica", en la que se irán integrando los conocimientos acumulados en diversos "Atlas" del ser humano y de otros seres vivos, en los que se podrán interrelacionar de modo funcionalmente significativo diversos niveles de comprensión de la materia viva: génico, genómico, regulación, biología celular, fisiología, evolución, etc. El impacto real de todo ello no se puede prever, pero no cabe duda que el PGH sienta las bases de un salto cualitativo y cuantitativo en nuestra visión del mundo vivo.

En la era post-genómica habrá muchas tareas por hacer (véase p. ej. Lander, 1996):

bulletIdentificación de las variantes alélicas más comunes de los genes humanos. Se trata de formar una especie de catálogo con las variantes alélicas más frecuentes (denominadas isotipos) de los genes humanos. Se calcula que para encontrarlas bastará re-secuenciar las regiones codificadoras de unos 100 individuos tomados al azar, y ello se podría llevar a cabo rápidamente con la técnica del chip de ADN. Correlacionando esas variantes con la incidencia de enfermedades, se podrá dar un salto adelante para identificar genes de susceptibilidad a numerosas enfermedades (y esto, sin recurrir a los clásicos y complejos estudios con "sagas familiares"). Se abre un campo inmenso a lo que podríamos llamar estudios epidemiológicos a base de genética de poblaciones, con la ayuda de las herramientas genómicas.
bulletAvances en los estudios evolutivos por comparación de genomas completos de diversos organismos. Tendremos a nuestro alcance la comprensión de multitud de aspectos insospechados de los más de 3000 millones de años de evolución. Se aclararán filogenias completas, se estudiarán familias de genes y proteínas, viendo cómo sus miembros varían y adquieren nuevas funciones en distintos linajes; se aclararán mecanismos genéticos evolutivos, etc.
bulletEstudios de "transcriptoma", es decir, entender cómo, cuándo y por qué se activan o se silencian distintos juegos de genes, en función del tipo celular, del tiempo, de los estímulos, etc. La comprensión de los circuitos de regulación según la fase de desarrollo del organismo y el órgano/tejido es uno de los retos de la fase post-genómica en la que ya estamos. Los proyectos genoma de ciertos organismos modelo (levadura, Caenorhabditis, mosca del vinagre, incluso ratón) prevén la obtención de miles de mutantes, de modo que virtualmente se disponga de razas inactivadas para cada gen concreto (razas noqueadas genéticamente, K.O.); de ese modo se podrán comprobar los fenotipos resultantes, a distintos niveles, permitiendo aclarar la función genética. Igualmente se pueden emplear técnicas de disrupción transitoria de la función genética (como los oligonucleótidos antisentido y las ribozimas) para estudiar la expresión de genes no susceptibles de analizar mediante la transgénesis inactivadora en línea germinal.
bulletUn ejemplo de este tipo de estudios está en un trabajo aparecido recientemente (9 de abril de 1998) en "Nature" (vol. 392, pp. 608-611). En él, miembro de la empresa Lexicon Genetics describen la aplicación de un método de mutagénesis en células madre embrionarias (ES) de ratón, que permite obtener miles de mutantes "marcados" con una etiqueta genética, de modo que luego se puede identificar el gen alterado y estudiar su función.
bulletEstudios de "proteoma": seguimiento de la expresión al nivel de traducción y post-traducción en cada tipo celular, y en función de nuevo de la fase de desarrollo y de las señales recibidas por la célula. Uno de los retos es automatizar y hacer más sencilla la técnica de geles bidimensionales, y a ser posible fusionarla con alguna técnica espectroscópica para caracterizar los cientos o miles de proteínas de cada muestra, e incluso las interacciones entre proteínas

Un atisbo de lo que puede ser esta era post-genómica del PGH la tenemos ya con la levadura, una vez finalizada la secuenciación de su genoma:

Tras la finalización del proyecto genoma de levadura

bulletGeneración de mutantes de delección específicos: Es perfectamente factible emprender la delección sistemática de todos y cada uno de los 6000 genes. Para ello se ha diseñado una de disrupción génica dirigida por PCR y que aprovecha la eficiencia y precisión del sistema de recombinación mitótica del organismo. El método permite la sustitución de cualquier gen de la levadura, incluyendo las razas industriales. Se pretende obtener una biblioteca de 6000 razas de delección, una por cada ORF o gen, y en la que cada cepa estará marcada con un ologonucleótido, a modo de código de barras molecular identificador.
bulletAnálisis fenotípico cuantitativo: análisis de control metabólico (MCA) de arriba a abajo
bulletEl transcriptoma: El transcriptoma es el conjunto de genes expresados, junto con su nivel de transcripción, bajo un conjunto dado de condiciones. Se están poniendo a prueba varias estrategias:
bulletUn enfoque que se está ensayando es el análisis en serie de la expresión génica (SAGE). Se trataría de determinar las condiciones fisiológicas y fases de desarrollo en las que genes y grupos de genes concretos se expresan, y de relacionar estos patrones de expresión con los de los genes cuyas funciones se conocen bien.
bulletOtros enfoques distintos son el despliegue diferencial (differential display) y las tecnologías de hibridación en formación ordenada (hybridation-array). Esta ofrece buenas esperanzas de lograr un análisis a gran escala con buenos rendimientos. Recuérdese lo dicho sobre los microchips de oligonucleótidos.

Lo que es cierto es que el análisis clásico tipo Northern no sirve para esto. Se espera que incluso termine recurriéndose al uso de paneles solapados de oligonucleótidose en hibridación en formación para la correlación entre transcritos individuales y las ORF correspondientes.

También aquí será importante agrupar los genes en unidades funcionalmente relacionadas, que es de esperar contengan genes de función ya conocida.

El proteoma Se trata del conjunto de proteínas que se encuentran en una célula bajo unas condiciones determinadas. El proteoma de levadura se está estudiando mediante electroforesis bidimensional, usando espectrografía de masas para identificar las proteínas contenidas en las manchas del gel. Será importante caracterizar proteínas de complejos proteicos, que suministrarían un importante correlato bioquímico de los datos in vivo.

Análisis funcionales de todo el genoma, recurriendo a novedosas tecnologías genéticas y bioinformáticas, incluyendo los chips de ADN.

En general, los análisis genómicos globales funcionales suministran una clasificación funcional más que una comprensión detallada de cada gen. Para esto último habrá que volver a los estudios de corte más clásico, sobre genes o grupos de genes.

Como dice Fred Sherman, uno de los líderes del Proyecto genoma de Levadura, tener la secuencia del genoma no es muy diferente a tener uno de los grandes catálogos de productos bioquímicos comerciales que tanto usan los biotecnólogos. Cada laboratorio dispone de ese catálago, pero cada uno usa un conjunto limitado de sus recursos, en función del tipo de investigación y del problema biológico que quiera abordar. Disponer del atlas del genoma y de las herramientas de estudio de rasgos complejos impulsará la biología del siglo XXI de un modo que no podemos sospechar aún.

Ir al siguiente apartado: [8. Impactos del PGH en Medicina]

[VOLVER AL ÍNDICE DE ESTE ARTÍCULO]

Ó 1997 ENRIQUE IAÑEZ PAREJA