Guía docente de Teoría de Estructuras (2461126)

Curso 2024/2025
Fecha de aprobación: 26/06/2024

Grado

Grado en Ingeniería Civil (Plan 2023)

Rama

Ingeniería y Arquitectura

Módulo

Formación Común a la Rama Civil

Materia

Ingeniería de Estructuras

Curso

2

Semestre

2

Créditos

7.5

Tipo

Obligatoria

Profesorado

Teórico

  • Antonio Burgos Núñez. Grupos: A y C
  • Juan José Granados Romera. Grupos: A y C
  • Germán Rodríguez Salido. Grupo: B

Práctico

  • Antonio Burgos Núñez Grupos: 1 y 3
  • Juan José Granados Romera Grupos: 1 y 3
  • Germán Rodríguez Salido Grupo: 2

Tutorías

Antonio Burgos Núñez

Ver email
  • Primer semestre
    • Jueves de 09:00 a 14:00 (Etsi Edif Nº 11)
  • Segundo semestre
    • Martes de 09:00 a 14:00 (Etsi Edif Nº 11)

Juan José Granados Romera

Ver email
  • Primer semestre
    • Lunes de 08:30 a 10:30 (Etsiccp Nº 6)
    • Martes de 08:30 a 10:30 (Etsiccp Nº 6)
    • Miércoles de 12:30 a 14:30 (Etsiccp Nº 6)
  • Segundo semestre
    • Miércoles de 12:30 a 14:30 (Etsiccp Nº 6)
    • Jueves de 12:30 a 14:30 (Etsiccp Nº 6)
    • Viernes de 12:30 a 14:30 (Etsiccp Nº 6)

Germán Rodríguez Salido

Ver email
  • Lunes de 19:30 a 21:30 (Etsiccp Nº 7)
  • Martes de 11:30 a 14:00 (Etsiccp Nº 7)

Prerrequisitos y/o Recomendaciones

Prerrequisitos: Haber superado* la asignatura de carácter básico:

  • Mecánica en la Ingeniería

Recomendaciones: Haber superado* las asignaturas de carácter básico:

  • Álgebra Lineal y Geometría
  • Cálculo
  • Fundamentos de Ingeniería Gráfica

(*) O en su defecto haber obtenido una calificación de al menos un tres.

Breve descripción de contenidos (Según memoria de verificación del Grado)

Cálculo de esfuerzos en estructuras isostáticas. Deformaciones de la rebanada y tensiones en la sección ante axil, flector, cortante y torsor. Cálculo de movimientos en estructuras isostáticas. Principio del trabajo virtual. Cálculo de estructuras hiperestáticas. Simetría. Líneas de influencia.

Competencias

Resultados de aprendizaje (Objetivos)

El alumno debe de aprender a:

  • Calcular esfuerzos en estructuras isostáticas: leyes de axiles, cortantes, momentos flectores y torsores
  • Calcular en una barra recta y para los distintos esfuerzos:
    • las tensiones en la sección;
    • las deformaciones de la rebanada;
    • los movimientos por integración de las deformaciones de la rebanada (lo que se conoce en flexión como integración de la ecuación diferencial de la elástica)
  • Calcular los movimientos en estructuras isostáticas compuestas por barras (rectas o arcos, según corresponda) mediante:
    • las fórmulas de Bresse;
    • los teoremas de Mohr;
    • el principio del trabajo virtual
  • Aplicar el principio del trabajo virtual para el cálculo de reacciones y esfuerzos en estructuras isostáticas
  • Calcular estructuras hiperestáticas mediante los métodos de compatibilidad y equilibrio
  • Aplicar simplificaciones por simetría al cálculo de estructuras
  • Calcular líneas de influencia de estructuras isostáticas e hiperestáticas

Programa de contenidos Teóricos y Prácticos

Teórico

Tema 1. Introducción a la teoría de estructuras

  • Introducción
  • Conceptos de sólido deformable y prisma mecánico
  • Principios generales de la resistencia de materiales
  • Tipos de solicitaciones
  • Tipos de apoyos y de nudos
  • Equilibrio estático y cálculo de esfuerzos
  • Criterios de signos
  • Equilibrio de la rebanada
    • Equilibrio de la rebanada de una barra recta
    • Equilibrio de la rebanada de un arco

Tema 2. Esfuerzo axil y flexión recta puros

  • Introducción
  • Axil puro. Estado de tracción o compresión pura
    • Tensiones en la sección debidas al axil
    • Deformación de la rebanada debida al axil
  • Flexión pura recta
    • Tensiones en la sección debidas al flector
    • Deformación de la rebanada debida al flector. Ecuación de la elástica
  • Concentración de tensiones

Tema 3. Flexión genérica

  • Introducción. La viga de Euler-Bernoulli
  • Tensiones en la sección en barras de varios materiales
  • Deformación de la rebanada en barras de varios materiales
  • Deformación por efecto de la temperatura
  • Ecuación de la elástica en barras de varios materiales
  • Flexión compuesta
    • Núcleo central
  • Materiales no resistentes a la tracción
  • Método de la homogeneización en secciones de varios materiales

Tema 4. Esfuerzo cortante

  • Introducción
  • Tensiones debidas al cortante. Fórmula de Collignon-Zhuravski
  • Tensiones debidas al cortante en barras de varios materiales
  • Límites de la fórmula de Collignon-Zhuravski
  • Deformación de la rebanada debida al cortante: la viga de Timoshenko
  • Tensiones debidas al cortante en perfiles de pared delgada
  • Centro de esfuerzos cortantes en perfiles de pared delgada
  • Tensiones y centro de esfuerzos cortantes en perfiles cerrados de una célula
  • Tensiones y centro de esfuerzos cortantes en perfiles cerrados de varias células
  • Actuación combinada de los esfuerzos axil, flector y cortante

Tema 5. Torsión uniforme

  • Introducción
  • Teoría de la torsión en barras de sección circular
  • Barras de sección circular de varios materiales concéntricos
  • Teoría de Saint-Venant de la torsión uniforme
    • Analogía de la membrana de Prandtl
  • Torsión en perfiles abiertos de pared delgada
  • Torsión en perfiles cerrados de pared delgada
    • Perfiles cerrados de una célula
    • Perfiles cerrados de varias células
  • Actuación combinada de los esfuerzos: axil, flector, cortante y torsor

Tema 6. Cálculo de movimientos

  • Introducción
  • Integración de la ecuación diferencial de la elástica
  • Movimientos en estructuras compuestas por varias barras
    • Fórmulas de Bresse
    • Teoremas de Mohr
  • Teoremas de la viga conjugada.

Tema 7. Principio del trabajo virtual

  • Introducción
    • Concepto del trabajo virtual y definición del PTV
    • PTV aplicado a una partícula
    • PTV en sistemas rígidos
  • PTV en estructuras
    • PTV en barras sometidas a axil
    • PTV en sistemas de barras articuladas
    • PTV en barras sometidas a flexión
    • Conclusión del PTV en estructuras
  • Aplicaciones del PTV
    • Ecuación de equilibrio. Método del desplazamiento virtual
    • Ecuación de compatibilidad. Método de la fuerza virtual
  • Teorema de reciprocidad de Maxwel-Betti
  • Métodos prácticos de aplicación del PTV

Tema 8. Métodos de cálculo de estructuras

  • Esquema general del diseño de estructuras
  • Tipología de los sistemas resistentes
  • Isostatismo, hiperestatismo y mecanismo
  • Método de la compatibilidad
  • Método del equilibrio
    • Método de la pendiente-deformación

Tema 9. Simetría

  • Introducción y definiciones
  • Simetría axial
  • Simetría central
  • Casos particulares
  • Método práctico para simplificar por simetría

Tema 10. Líneas de influencia

  • El método de la carga fija
  • Teorema de reciprocidad aplicado al cálculo de líneas de influencia
    • Líneas de influencia de movimientos
    • Líneas de influencia de reacciones
    • Líneas de influencia de esfuerzos
    • Resumen del método
  • Aplicaciones de las líneas de influencia a conjuntos de cargas
    • Trenes de carga
    • Cargas distribuidas
  • Máximo flector de un tren de carga en una viga biapoyada

Práctico

Cada tema teórico incluye sus correspondientes prácticas.

Bibliografía

Bibliografía fundamental

  • RESISTENCIA DE MATERIALES, TEORÍA DE ESTRUCTURAS E INTRODUCCIÓN A LA ELASTICIDAD, Juan José Granados (Godel. 4ed).
  • PROBLEMAS RESUELTOS DE RESISTENCIA DE MATERIALES Y TEORÍA DE ESTRUCTURAS. J.J. Granados, P. Museros y J.M. Soria (Garceta. 1ed).
  • RESISTENCIA DE MATERIALES, L. Ortiz Berrocal (McGraw-Hill)
  • TIMOSHENKO. RESISTENCIA DE MATERIALES, James M. Gere (Thomson)
  • TEORÍA DE LA ELASTICIDAD, Federico París (Universidad de Sevilla, Grupo de Elasticidad y Resistencia de Materiales)
  • GARRIDO Y FOCES. RESISTENCIA DE MATERIALES, Garrido y Foces (Univ. Valladolid)
  • MECÁNICA DE SÓLIDOS, Egor P. Popov (Pearson Educación)
  • PROBLEMAS DE RESISTENCIA DE MATERIALES, Miroliubov (Mir)

Bibliografía complementaria

  • ANÁLISIS DE ESTRUCTURAS DE BARRAS. FUNDAMENTOS. R. Gallego y G. Rus (ETSICCP, UGR)
  • ANÁLISIS DE ESTRUCTURAS: TEORÍA, PROBLEMAS Y PROGRAMAS, R. Argüelles (Fundación Conde del Valle de Salazar)
  • ANÁLISIS DE VIGAS, ARCOS, PLACAS Y LÁMINAS: UNA PRESENTACIÓN UNIFICADA. S. Monleón (UPV)
  • ELASTICIDAD, L. Ortiz Berrocal (UPM)
  • MECÁNICA DE MATERIALES, Beer, Johnstonet al.(McGraw-Hill)
  • MECÁNICA DE MATERIALES, Hibbeler, Russell Charles.(Pearson)
  • MECÁNICA VECTORIAL PARA INGENIEROS, Beer, Johnstonet al.(McGraw-Hill)
  • MECHANICS OF ELASTIC STRUCTURES, Oden y Ripperger (McGraw-Hill)
  • PROBLEMAS DE RESISTENCIA DE MATERIALES, F. Rodríguez Avial (ETSII, UPM)
  • RESISTENCIA DE MATERIALES, A. Samartín (Colegio de Ing. de Caminos C. y P.)
  • RESISTENCIA DE MATERIALES, S. Timoshenko (Espasa-Calpe)
  • TEORÍA DE LA ELASTICIDAD, Timoshenko y Goodier (Urmo)
  • TEORÍA DE LAS ESTRUCTURAS, S. Timoshenko y Young (Urmo)

Metodología docente

Evaluación (instrumentos de evaluación, criterios de evaluación y porcentaje sobre la calificación final)

Evaluación Ordinaria

A continuación, se describen de forma detallada los dos caminos que tiene el alumno para superar la asignatura:

  1. EVALUACIÓN POR CURSO O CONTINUA (convocatoria ordinaria).
  2. EVALUACIÓN EN UN SOLO "EXAMEN FINAL" (convocatorias extraordinaria, especial y evaluación única final de la convocatoria ordinaria). Este punto se explica en el apartado siguiente, dedicado a la Evaluación extraordinaria.

1. EVALUACIÓN POR CURSO O CONTINUA (convocatoria ordinaria)

La evaluación continua consta de distintas actividades y pruebas que se evalúan independientemente, estas notas se van sumando para formar la calificación por curso del alumno. Este método es el obligatorio, salvo causa justificada, para superar la asignatura, además de ser el más apropiado ya que se trata de un trabajo continuado, una adquisición de conocimientos gradual y un sistema de evaluación compuesto de test, preguntas en clase y parciales, que facilita el aprendizaje de este tipo de materia y por tanto, aprobar.

Actividades y pruebas de la evaluación por curso o continua

  • (Act Ev 1) Doce test en la plataforma PRADO que pueden ir acompañados de test presenciales (casi todas las semanas habrá un test). (Peso 24%)
  • (Act Ev 2) Evaluación del estudio previo de la parte teórica (referido al primer apartado de la metodología docente). La forma de evaluar dicho estudio previo será mediante algunas de las siguientes actividades: test on line, test presenciales, foros Prado, preguntas en clase y participación activa en clase. (8%)
  • (Act Ev 3) Dos exámenes parciales, que incluirán teoría y problemas. (34% + 34%).

La fecha del primer parcial se fijará al comienzo del curso, siendo la fecha del segundo parcial la fijada por el centro para la convocatoria ordinaria de enero. Nótese que en esta convocatoria ordinaria se realizarán dos exámenes: el segundo parcial; y el "examen final", al que solo pueden acceder los alumnos a los que se les haya sido concedida la evaluación única final (EUF).

Nota: Las calificaciones indicadas de aquí en adelante se refieren a un máximo de 10 puntos. Cuando se hace referencia a una media, se refiere a media ponderada según los pesos otorgados a cada una de las actividades y pruebas de la evaluación.

Condiciones para aprobar la asignatura; se deben cumplir todas

  • (C1) obtener una calificación media de al menos un 5 entre las actividades de evaluación 1, 2 y 3 (Act Ev 1, Act Ev 2 y Act Ev 3);
  • (C2) obtener una calificación MEDIA mínima de 3.5 de los dos parciales, punto (Act Ev 3) de las pruebas;
  • (C3) obtener una calificación mayor o igual a 2.5 en CADA PARCIAL.

Reglas de evaluación

Un alumno podrá recuperar un parcial en la convocatoria extraordinaria si lo solicita y cumple uno de estos dos requisitos:

  • si presentó a su profesor y en su momento ausencia justificada al parcial;
  • o si lo ha suspendido y tiene aprobado el otro parcial, o sea, obtuvo al menos un 5. Esto es equivalente a decir que "se guardan los parciales aprobados".

Los alumnos hayan suspendido y no se les pueda guardar ningún parcial pueden solicitar que se les conserve la nota de las actividades de evaluación 1 y 2 (Act Ev 1 y Act Ev 2). Para ello, además de solicitarlo, deben de haber obtenido una media en estas actividades de al menos un 5. Esto es equivalente a decir que "se guardan las actividades de evaluación 1 y 2 (Act Ev 1 y Act Ev 2) si su media es aprobada". Estos alumnos se presentaran al examen que se denomina "global del 1er parcial y del 2do parcial" (Global 1P y 2P).

Por tanto, a modo de resumen, para los alumnos suspensos está la convocatoria extraordinaria, en la que se realizarán cuatro exámenes:

  • Dos parciales: primer y segundo parcial para los alumnos suspensos que soliciten examinarse de un parcial.
  • Un examen "Global 1P y 2P", para los alumnos suspensos que soliciten examinarse de ambos parciales. IMPORTANTE: Si el alumno ha solicitado que se le guarde la nota de las actividades de evaluación 1 y 2 (Act Ev 1 y Act Ev 2), deberá obtener una nota mínima en este examen global de 3.5, pues es de aplicación la segunda condición establecida para aprobar la asignatura (C2).
  • Un examen "Final de la Convocatoria Extraordinaria", para el resto que hayan suspendido. En este caso es aplicable lo indicado en el apartado de Evaluación extraordinaria relativo al "EXAMEN FINAL".

Ejemplos de cálculo de calificación de la evaluación continua

  • CASO A1. Supongamos las siguientes notas: test (Act Ev 1): 7.50; estudio previo (Act Ev 2) 7.0; 1er Parcial: 8.0; 2º Parcial: 2.5. Calificación final 5.9 (aprobado).
  • CASO A2. Supongamos las siguientes notas: test (Act Ev 1): 7.50; estudio previo (Act Ev 2) 7.0; 1er Parcial: 8.0; 2º Parcial: 2.0. Calificación final: suspenso, ya que no se puede hacer media al no llegar al 2.5 en el 2º parcial (como la media sale mayor de 4.0, realmente la media saldría 5.8, no se hace media, y en acta figura con un 4.0). El alumno puede solicitar recuperar dicho parcial en la convocatoria extraordinaria, necesitando obtener un 2.5 para aprobar. Supongamos que obtiene un 3.5, entonces su calificación final sería 6.3.
  • CASO B1. Supongamos las siguientes notas: test (Act Ev 1): 10; estudio previo (Act Ev 2) 9.0; 1er Parcial: 3.4; 2º Parcial: 3.6. Calificación final 5.5 (aprobado).
  • CASO B2. Supongamos las siguientes notas: test (Act Ev 1): 10; estudio previo (Act Ev 2) 9.0; 1er Parcial: 3.4; 2º Parcial: 3.3. Calificación final suspenso, pues la media de los parciales no llega al 3.5. (como la media sale mayor de 4.0, realmente saldría 5.4, no se hace media, y en el acta figura con un 4.0). El alumno puede solicitar que se le guarden las notas de las actividades de evaluación 1 y 2 (Act Ev 1 y Act Ev 2), presentándose al "Global 1Py 2P" en el que deberá obtener una nota de al menos 3.5 para que se le haga media. Supongamos que obtiene un 4.1, entonces su calificación final sería 5.9.

Evaluación Extraordinaria

2. EVALUACIÓN EN UN SOLO "EXAMEN FINAL" (convocatoria extraordinaria, convocatoria especial y evaluación única final de la convocatoria ordinaria)

Esta modalidad de evaluación es la alternativa a la evaluación continua u ordinaria.

Se recuerda que el examen final de la convocatoria ordinaria de enero está destinado exclusivamente al alumno que no pueda realizar, por causas justificadas, la evaluación continua. En tal caso el alumno puede solicitar la evaluación única final, según la normativa de la UGR (ver la Normativa de evaluación y de calificación de los estudiantes de la Universidad de Granada).

El examen final de cualquier convocatoria (ordinaria o extraordinaria) contendrá ejercicios de teoría, problemas y cuestiones sobre las prácticas de laboratorio. Se indicará el peso de cada uno de los ejercicios. La nota del examen final será determinada tras la evaluación global del examen, por lo que no será la media obtenida en los distintos ejercicios sin más, sino que habrá que tener en cuenta los siguientes factores:

  • Un ejercicio muy deficiente (con menos de 2.5 puntos sobre 10) no contribuirá a la media.
  • Si se han suspendido 2/3 de los ejercicios (en peso), o más, con menos de 4 puntos (sobre 10), la calificación será suspenso, aunque la media sea mayor a 5, ya que el examen está muy descompensado.

Como ejemplo, supongamos que el examen consta de tres ejercicios que pesan por igual (uno de teoría y dos problemas). Veamos lo que sucede en distintos casos:

  • CASO 1. Teoría 3.0; 1er problema 3.5; 2º problema 10. La nota media sería 5.5, pero la calificación del examen es de suspenso ya que tiene 2/3 del examen con menos de 4 puntos (en estos casos la calificación numérica será 4.0).
  • CASO 2. Teoría 5.0; 1er problema 2.0; 2do problema 8.0. La nota media sería 5, pero el 1er problema tiene una calificación muy deficiente (inferior a 2.5) por lo que no entra a sumar en la nota media. La calificación final es (5+0+8)/3 = 4.3, suspenso.
  • CASO 3. Teoría 4.0; 1er problema 3.0; 2do problema 8.0. En este caso la media sí que arroja la nota final, que es 5.0, aprobado.

Evaluación única final

La evaluación única final será la propia de un examen final, por lo que contendrá preguntas de teoría, problemas y cuestiones sobre las prácticas de laboratorio, según se ha descrito previamente.