Problemas variacionales en Geometría

Variational problems in Geometry

Grupo de investigación de la Junta de Andalucía (FQM 325).
Dpto de Geometría y Topología. Universidad de Granada

Research group of Junta de Andalucía (FQM 325).
Deparment of Geometry and Topology. Granada University

Publicaciones de Pablo Mira [rss]
2010
[18] José A. Gálvez, Asun Jiménez, Pablo Mira. A correspondence for isometric immersions into product spaces and its applications J. Geom. Phys. 60 (2010) no. 11 , 1819–1832. MathScinet [bib] [pdf] [doi]
[17] José A. Gálvez, Pablo Mira. Isometric immersions of $\Bbb R^2$ into $\Bbb R^4$ and perturbation of Hopf tori Math. Z. 266 (2010) no. 1 , 207–227. MathScinet [bib] [pdf] [doi]
2009
[16] José M. Espinar, José A. Gálvez, Pablo Mira. Hypersurfaces in $\Bbb H^n+1$ and conformally invariant equations: the generalized Christoffel and Nirenberg problems J. Eur. Math. Soc. (JEMS) 11 (2009) no. 4 , 903–939. MathScinet [bib] [pdf] [doi]
[15] Isabel Fernández, Pablo Mira. Holomorphic quadratic differentials and the Bernstein problem in Heisenberg space Trans. Amer. Math. Soc. 361 (2009) no. 11 , 5737–5752. MathScinet [bib] [pdf] [doi]
[14] José A. Gálvez, Pablo Mira. The Liouville equation in a half-plane J. Differential Equations 246 (2009) no. 11 , 4173–4187. MathScinet [bib] [pdf] [doi]
[13] Juan A. Aledo, José A. Gálvez, Pablo Mira. A D'Alembert formula for flat surfaces in the 3-sphere J. Geom. Anal. 19 (2009) no. 2 , 211–232. MathScinet [bib] [pdf] [doi]
2008
[12] José A. Gálvez, Antonio Martínez, Pablo Mira. The Bonnet problem for surfaces in homogeneous 3-manifolds Comm. Anal. Geom. 16 (2008) no. 5 , 907–935. MathScinet [bib]
2007
[11] José A. Gálvez, Antonio Martínez, Pablo Mira. About the Bonnet problem in homogeneous 3-spaces Chapter in Symposium on the Differential Geometry of Submanifolds [s.n.], [s.l.] (2007) , 147–154. MathScinet [bib]
[10] Isabel Fernández, Pablo Mira. Complete maximal surfaces in static Robertson-Walker 3-spaces Gen. Relativity Gravitation 39 (2007) no. 12 , 2073–2077. MathScinet [bib] [pdf] [doi]
[9] Isabel Fernández, Pablo Mira. Harmonic maps and constant mean curvature surfaces in $\Bbb H^2\times\Bbb R$ Amer. J. Math. 129 (2007) no. 4 , 1145–1181. MathScinet [bib] [pdf] [doi]
[8] Isabel Fernández, Pablo Mira. A characterization of constant mean curvature surfaces in homogeneous 3-manifolds Differential Geom. Appl. 25 (2007) no. 3 , 281–289. MathScinet [bib] [pdf] [doi]
2006
[7] Juan A. Aledo, José A. Gálvez, Pablo Mira. Isometric immersions of $\Bbb L^2$ into $\Bbb L^4$ Differential Geom. Appl. 24 (2006) no. 6 , 613–627. MathScinet [bib] [pdf] [doi]
2005
[6] José A. Gálvez, Pablo Mira. An alternative proof of the Bryant representation Chapter in Differential geometry and its applications Matfyzpress, Prague (2005) , 151–155. MathScinet [bib]
[5] Juan A. Aledo, José A. Gálvez, Pablo Mira. Marginally trapped surfaces in $\Bbb L^4$ and an extended Weierstrass-Bryant representation Ann. Global Anal. Geom. 28 (2005) no. 4 , 395–415. MathScinet [bib] [pdf] [doi]
[4] José A. Gálvez, Antonio Martínez, Pablo Mira. The space of solutions to the Hessian one equation in the finitely punctured plane J. Math. Pures Appl. (9) 84 (2005) no. 12 , 1744–1757. MathScinet [bib] [pdf] [doi]
[3] José A. Gálvez, Pablo Mira. Embedded isolated singularities of flat surfaces in hyperbolic 3-space Calc. Var. Partial Differential Equations 24 (2005) no. 2 , 239–260. MathScinet [bib] [pdf] [doi]
[2] José A. Gálvez, Pablo Mira. The Cauchy problem for the Liouville equation and Bryant surfaces Adv. Math. 195 (2005) no. 2 , 456–490. MathScinet [bib] [pdf] [doi]
2004
[1] José A. Gálvez, Pablo Mira. Dense solutions to the Cauchy problem for minimal surfaces Bull. Braz. Math. Soc. (N.S.) 35 (2004) no. 3 , 387–394. MathScinet [bib] [pdf] [doi]
Powered by bibtexbrowser
Subir | Inicio | Contacta | Diseño: Francisco TorralboTop | Actualized 01/31/06 | Home | Contact | Design: Francisco Torralbo | HTML 4.01 | CSS 2.0