Loading [MathJax]/jax/output/HTML-CSS/jax.js

Leonor Ferrer Martí­nez

 
 

Papers

  1. L. Ferrer, F. Martin, M. Umehara, K. Yamada, A construction of complete bounded null curve in C3, to appear in Kodai Math. J.
  2. L. Ferrer, F. Martin, W.H. Meeks III, Existence of proper minimal surfaces of arbitrary topological type, Adv. Math. 231 (2012), no. 1, 378-413.
  3. A. Alarcón, L. Ferrer, F. Martín, Density theorems for complete minimal surfaces in R3, Geom. Funct. Anal 18 (2008), no. 1, 1-49
  4. R. M. B. Chaves, L. Ferrer, Non existence results and convex hull property for maximal surfaces in L3, Pacific J. Math. 231 (2007), no. 1, 1-26.
  5. A. Alarcón, L. Ferrer, F. Martín, A uniqueness theorem for the singly periodic genus-one helicoid, Trans. Amer. Math. Soc. 359 (2007), no. 6, 2819-2829.
  6. L. Ferrer, F. Martín, Minimal surfaces with helicoidal ends , Math. Z. 250 (2005), no. 4, 807-839.
  7. L. Ferrer, F. Martín, Properly embedded minimal disks bounded by non-compact polygonal lines, Pacific J. Math. 214 (2004), no. 1, 55-88.
  8. L. Ferrer, Singly-Periodic Improper Affine Spheres, Differential Geom. Appl. 17 (2002), no. 1, 83-110.
  9. L. Ferrer, A. Martínez, F. Milán, The Space of Parabolic Affine Spheres with fixed compact boundary, Monatsh. Math. 130 (2000), no. 1, 19-27.
  10. L. Ferrer, A. Martínez, F. Milán, An Extension of a Theorem by K. Jörgens and a Maximum Principle at Infinity, Math. Z. 230 (1999), no. 3, 471-486.
  11. L. Ferrer, A. Martínez, F. Milán, Symmetry and Uniqueness of Parabolic Affine Spheres, Math. Ann. 305 (1996), no. 2, 311-327.

Proceedings

  1. A. Alarcón, L. Ferrer, F. Martín, On the singly periodic genus one helicoid, Differ. Geom. Dyn. Syst. 8 (2006), 1-7.
  2. L. Ferrer, F. Martín, Minimal discs bounded by straight lines, Differential Geometry Valencia 2001, 157-166.
  3. L. Ferrer, A. Martínez, F. Milán, Improper Affine Hypersheres. Geometry and Topology of Submanifolds, VIII. Proceedings of the 1995 Nordfjordeid Conference, 187-194.

Volver al inicio de la página.