Leonor Ferrer Martí­nez

 
 

Papers

  1. L. Ferrer, F. Martin, M. Umehara, K. Yamada, A construction of complete bounded null curve in \(\mathbb{C}^3\), to appear in Kodai Math. J.
  2. L. Ferrer, F. Martin, W.H. Meeks III, Existence of proper minimal surfaces of arbitrary topological type, Adv. Math. 231 (2012), no. 1, 378-413.
  3. A. Alarcón, L. Ferrer, F. Martín, Density theorems for complete minimal surfaces in \(\mathbb{R}^3\), Geom. Funct. Anal 18 (2008), no. 1, 1-49
  4. R. M. B. Chaves, L. Ferrer, Non existence results and convex hull property for maximal surfaces in \(\mathbb{L}^3\), Pacific J. Math. 231 (2007), no. 1, 1-26.
  5. A. Alarcón, L. Ferrer, F. Martín, A uniqueness theorem for the singly periodic genus-one helicoid, Trans. Amer. Math. Soc. 359 (2007), no. 6, 2819-2829.
  6. L. Ferrer, F. Martín, Minimal surfaces with helicoidal ends , Math. Z. 250 (2005), no. 4, 807-839.
  7. L. Ferrer, F. Martín, Properly embedded minimal disks bounded by non-compact polygonal lines, Pacific J. Math. 214 (2004), no. 1, 55-88.
  8. L. Ferrer, Singly-Periodic Improper Affine Spheres, Differential Geom. Appl. 17 (2002), no. 1, 83-110.
  9. L. Ferrer, A. Martínez, F. Milán, The Space of Parabolic Affine Spheres with fixed compact boundary, Monatsh. Math. 130 (2000), no. 1, 19-27.
  10. L. Ferrer, A. Martínez, F. Milán, An Extension of a Theorem by K. Jörgens and a Maximum Principle at Infinity, Math. Z. 230 (1999), no. 3, 471-486.
  11. L. Ferrer, A. Martínez, F. Milán, Symmetry and Uniqueness of Parabolic Affine Spheres, Math. Ann. 305 (1996), no. 2, 311-327.

Proceedings

  1. A. Alarcón, L. Ferrer, F. Martín, On the singly periodic genus one helicoid, Differ. Geom. Dyn. Syst. 8 (2006), 1-7.
  2. L. Ferrer, F. Martín, Minimal discs bounded by straight lines, Differential Geometry Valencia 2001, 157-166.
  3. L. Ferrer, A. Martínez, F. Milán, Improper Affine Hypersheres. Geometry and Topology of Submanifolds, VIII. Proceedings of the 1995 Nordfjordeid Conference, 187-194.

Volver al inicio de la página.