Problemas variacionales en Geometría

Variational problems in Geometry

Grupo de investigación de la Junta de Andalucía (FQM 325).
Dpto de Geometría y Topología. Universidad de Granada

Research group of Junta de Andalucía (FQM 325).
Deparment of Geometry and Topology. Granada University

Year: 2009 [rss]
2009
[21] Juan A. Aledo, Antonio Martínez, Francisco Milán. Affine maximal surfaces with singularities Results Math. 56 (2009) no. 1-4 , 91–107. MathScinet [bib] [pdf] [doi]
[20] Manfredo do Carmo, Isabel Fernández. A Hopf theorem for open surfaces in product spaces Forum Math. 21 (2009) no. 6 , 951–963. MathScinet [bib] [pdf] [doi]
[19] Rafael López. A new proof of a characterization of small spherical caps Results Math. 55 (2009) no. 3-4 , 427–436. MathScinet [bib] [pdf] [doi]
[18] III William H. Meeks, Joaquín Pérez. Properly embedded minimal planar domains with infinite topology are Riemann minimal examples Chapter in Current developments in mathematics, 2008 Int. Press, Somerville, MA (2009) , 281–346. MathScinet [bib]
[17] Rafael López. Parabolic surfaces in hyperbolic space with constant Gaussian curvature Bull. Belg. Math. Soc. Simon Stevin 16 (2009) no. 2 , 337–349. MathScinet [bib] [pdf]
[16] José M. Espinar, José A. Gálvez, Pablo Mira. Hypersurfaces in $\Bbb H^n+1$ and conformally invariant equations: the generalized Christoffel and Nirenberg problems J. Eur. Math. Soc. (JEMS) 11 (2009) no. 4 , 903–939. MathScinet [bib] [pdf] [doi]
[15] José M. Espinar, Harold Rosenberg. Complete constant mean curvature surfaces and Bernstein type theorems in $M^2\times\Bbb R$ J. Differential Geom. 82 (2009) no. 3 , 611–628. MathScinet [bib] [pdf]
[14] Rafael López. Stationary bands in three-dimensional Minkowski space Osaka J. Math. 46 (2009) no. 1 , 1–20. MathScinet [bib] [pdf]
[13] Isabel Fernández, Pablo Mira. Holomorphic quadratic differentials and the Bernstein problem in Heisenberg space Trans. Amer. Math. Soc. 361 (2009) no. 11 , 5737–5752. MathScinet [bib] [pdf] [doi]
[12] Juan A. Aledo, Antonio Martínez, Francisco Milán. Non-removable singularities of a fourth-order nonlinear partial differential equation J. Differential Equations 247 (2009) no. 2 , 331–343. MathScinet [bib] [pdf] [doi]
[11] Rafael López. A comparison result for radial solutions of the mean curvature equation Appl. Math. Lett. 22 (2009) no. 6 , 860–864. MathScinet [bib] [pdf] [doi]
[10] Sebastián Montiel, Antonio Ros. Curves and surfaces American Mathematical Society 69 (2009) , xvi+376. (Translated from the 1998 Spanish original by Montiel and edited by Donald Babbitt) MathScinet [bib]
[9] José A. Gálvez, Pablo Mira. The Liouville equation in a half-plane J. Differential Equations 246 (2009) no. 11 , 4173–4187. MathScinet [bib] [pdf] [doi]
[8] Francisco Martin, Masaaki Umehara, Kotaro Yamada. Complete bounded holomorphic curves immersed in $\Bbb C^2$ with arbitrary genus Proc. Amer. Math. Soc. 137 (2009) no. 10 , 3437–3450. MathScinet [bib] [pdf] [doi]
[7] Francisco Martin, Masaaki Umehara, Kotaro Yamada. Complete bounded null curves immersed in $\Bbb C^3$ and $\rm SL(2,\Bbb C)$ Calc. Var. Partial Differential Equations 36 (2009) no. 1 , 119–139. MathScinet [bib] [pdf] [doi]
[6] José M. Espinar, José A. Gálvez, Harold Rosenberg. Complete surfaces with positive extrinsic curvature in product spaces Comment. Math. Helv. 84 (2009) no. 2 , 351–386. MathScinet [bib] [pdf] [doi]
[5] Rafael López. Parabolic Weingarten surfaces in hyperbolic space Publ. Math. Debrecen 74 (2009) no. 1-2 , 59–80. MathScinet [bib]
[4] Laurent Hauswirth, Filippo Morabito, M. Magdalena Rodríguez. An end-to-end construction for singly periodic minimal surfaces Pacific J. Math. 241 (2009) no. 1 , 1–61. MathScinet [bib] [pdf] [doi]
[3] Juan A. Aledo, José A. Gálvez, Pablo Mira. A D'Alembert formula for flat surfaces in the 3-sphere J. Geom. Anal. 19 (2009) no. 2 , 211–232. MathScinet [bib] [pdf] [doi]
[2] Juan A. Aledo, Antonio Martínez, Francisco Milán. The affine Cauchy problem J. Math. Anal. Appl. 351 (2009) no. 1 , 70–83. MathScinet [bib] [pdf] [doi]
[1] Manuel Ritoré. Examples of area-minimizing surfaces in the sub-Riemannian Heisenberg group $\Bbb H^1$ with low regularity Calc. Var. Partial Differential Equations 34 (2009) no. 2 , 179–192. MathScinet [bib] [pdf] [doi]
Powered by bibtexbrowser