Publicaciones
- A.
Hurtado, M. Ritoré, C. Rosales, The classification of complete stable
area-stationary surfaces in the Heisenberg group H^1, preprint 2008
- M. Ritoré, A proof by calibration of an isoperimetric inequality in the Heisenberg group H^n, preprint 2008
- M.
Ritoré, Examples of area-minimizing surfaces in the sub-Riemannian
Heisenberg group H^1 with low regularity, Cal. Var. Partial
Differential Equations 34 no. 2 (2009) 179-192. doi:10.1007/s00526-008-0181-6
- M. Ritoré, C. Rosales, Area-stationary surfaces in the Heisenberg group H^1, Adv. Math. 219 no. 2 (2008) 633-671. doi:10.1016/j.aim.2008.05.011
- A.
Cañete, M. Ritoré, The isoperimetric problem in complete annuli of
revolution with increasing Gauss curvature, Proc. Royal Society
Edinburgh 138 no. 5 (2008) 989-1003. doi:10.1017/S0308210507000777
- J. Choe, M. Ritoré, The relative isoperimetric inequality in Cartan-Hadamard 3-manifolds, J. Reine Angew. Math. 605 (2007) 179-191.
- J.
Choe, M. Ghomi, M. Ritoré, The relative isoperimetric inequality
outside a convex domain in R^n, Cal. Var. Partial Differential
Equations 29 no. 4 (2007) 421-429.
- M.
Ritoré, C. Rosales, Rotationally invariant hypersurfaces with constant
mean curvature in the Heisenberg group H^n, J. Geom. Anal. 16, no. 4 (2006) 703-720.
- A. Cañete, Stable and isoperimetric regions in rotationally symmetric tori with decreasing Gauss curvature, Indiana Univ. Math. J., 56, no. 4 (2007) 1629-1660
- J. Choe, M. Ghomi, M. Ritoré, Total positive curvature of hypersurfaces with convex boundary, J. Differential Geom. 72, no. 1 (2006) 129-147
- M. Ritoré, Optimal isoperimetric inequalities for three-dimensional Cartan-Hadamard manifolds, Global theory of minimal surfaces, 395-404, Clay Math. Proc., 2, Amer. Math. Soc., Providence, RI, 2005
- F. Morgan, M. Ritoré, Geometric measure theory and the proof of the double bubble conjecture, Global theory of minimal surfaces, 1-18, Clay Math. Proc., 2, Amer. Math. Soc., Providence, RI, 2005
- C. Rosales, V. Bayle, Some isoperimetric comparison theorems for convex bodies in Riemannian
manifolds, Indiana Univ. Math. J. 54 (2005), no. 5,
1371-1394
- M.
Ritoré, C. Rosales, Existence and characterization of regions
minimizing perimeter under a volume constraint inside Euclidean cones,
Trans. Amer. Math. Soc. 356 (2004), no. 11, 4601-4622.