Universidad de Granada

ReiDoCrea

Artículo número 15

Learning about chlorophyll and anthocyanins as potential indicators of plant physiological state

Ali Ahmad – Universidad de Granada – ORCID

Belén García del Moral Garrido – Universidad de Almería - ORCID

Vanessa Martos Núñez - Universidad de Granada - ORCID

Abstract

Currently, increased crop yield is direly needed considering the ever-increasing world population and climate change. Crops growth and production is mainly dependent upon their physiological state and vigor. Several forms of plant pigments exist naturally. They are categorized into four major groups: namely betalains (betacyanins, betaxanthins), carotenoids (carotenes, xanthophylls), chlorophylls (Chl a and b), and flavonoids (anthocyanins, aurones, chalcones, flavonols, proanthocyanidins). Out of all these, Chlorophylls (Chl) and Anthocyanins (Anth) are the two most important plant pigments that provide valuable insight into the plant physiological state. Primary function of Chl is the conversion of solar energy into chemical energy that is further utilized in the photosynthetic process, whereas Anth are multifunctional molecules that apart from coloration of plant organs also play an important role in stress mitigation. This study might serve as a guide for students interested to learn about plant physiology.

Keyword: Plant pigments

Referencias

Ai, T. N., Naing, A. H., Yun, B.-W., Lim, S. H., & Kim, C. K. (2018). Overexpression of RsMYB1 enhances anthocyanin accumulation and heavy metal stress tolerance in transgenic petunia. Frontiers in plant science, 1388.

Albert, N. W., Griffiths, A. G., Cousins, G. R., Verry, I. M., & Williams, W. M. (2015). Anthocyanin leaf markings are regulated by a family of R2R3‐MYB genes in the genus T rifolium. New Phytologist, 205(2), 882-893.

Bhandari, S. R., Kim, Y. H., & Lee, J. G. (2018). Detection of temperature stress using chlorophyll fluorescence parameters and stress-related chlorophyll and proline content in paprika (Capsicum annuum L.) seedlings.

Blando, F., Gerardi, C., & Nicoletti, I. (2004). Sour cherry (Prunus cerasus L) anthocyanins as ingredients for functional foods. Journal of Biomedicine and Biotechnology, 2004(5), 253.

Cheng, Y.-J., Kim, M.-D., Deng, X.-P., Kwak, S.-S., & Chen, W. (2013). Enhanced salt stress tolerance in transgenic potato plants expressing IbMYB1, a sweet potato transcription factor. Journal of microbiology and biotechnology, 23(12), 1737-1746.

Davies, K. M. (2009). An introduction to plant pigments in biology and commerce. Plant pigments and their manipulation, 1-22.

Davies, K. M., Albert, N. W., Zhou, Y., & Schwinn, K. E. (2018). Functions of flavonoid and betalain pigments in abiotic stress tolerance in plants. Annual Plant Reviews Online, 21-62.

Garriga, M., Retamales, J. B., Romero‐Bravo, S., Caligari, P. D., & Lobos, G. A. (2014). Chlorophyll, anthocyanin, and gas exchange changes assessed by spectroradiometry in Fragaria chiloensis under salt stress. Journal of integrative plant biology, 56(5), 505-515.

Gholamin, R., & Khayatnezhad, M. (2020). Assessment of the Correlation between Chlorophyll Content and Drought Resistance in Corn Cultivars (Zea Mays). Helix-The Scientific Explorer| Peer Reviewed Bimonthly International Journal, 10(05), 93-97.

Gitelson, A. A., Chivkunova, O. B., & Merzlyak, M. N. (2009). Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. American Journal of Botany, 96(10), 1861-1868.

Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of plant physiology, 160(3), 271-282.

Gould, K. S. (2004). Nature's Swiss army knife: the diverse protective roles of anthocyanins in leaves. Journal of Biomedicine and Biotechnology, 2004(5), 314.

Gould, K. S., Markham, K. R., Smith, R. H., & Goris, J. J. (2000). Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. Journal of Experimental Botany, 51(347), 1107-1115.

Humphrey, A. (1980). Chlorophyll. Food Chemistry, 5(1), 57-67.

Kalaji, H. M., Schansker, G., Brestic, M., Bussotti, F., Calatayud, A., Ferroni, L., Goltsev, V., Guidi, L., Jajoo, A., & Li, P. (2017). Frequently asked questions about chlorophyll fluorescence, the sequel. Photosynthesis Research, 132(1), 13-66.

Khaleghi, E., Arzani, K., Moallemi, N., & Barzegar, M. (2012). Evaluation of chlorophyll content and chlorophyll fluorescence parameters and relationships between chlorophyll a, b and chlorophyll content index under water stress in Olea europaea cv. Dezful. World Acad. Sci. Eng. Technol, 68, 1154-1157.

Khayatnezhad, M., & Gholamin, R. (2021). The effect of drought stress on the superoxide dismutase and Chlorophyll content in durum wheat genotypes. Advancements in Life Sciences, 8(2), 119-123.

León-Chan, R. G., López-Meyer, M., Osuna-Enciso, T., Sañudo-Barajas, J. A., Heredia, J. B., & León-Félix, J. (2017). Low temperature and ultraviolet-B radiation affect chlorophyll content and induce the accumulation of UV-B-absorbing and antioxidant compounds in bell pepper (Capsicum annuum) plants. Environmental and Experimental Botany, 139, 143-151.

Li, P., Li, Y. J., Zhang, F. J., Zhang, G. Z., Jiang, X. Y., Yu, H. M., & Hou, B. K. (2017). The Arabidopsis UDP‐glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. The Plant Journal, 89(1), 85-103.

Liang, J., & He, J. (2018). Protective role of anthocyanins in plants under low nitrogen stress. Biochemical and Biophysical Research Communications, 498(4), 946-953.

Martos, V., Ahmad, A., Cartujo, P., & Ordoñez, J. (2021). Ensuring agricultural sustainability through remote sensing in the era of agriculture 5.0. Applied Sciences, 11(13), 5911.

Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668.

Merzlyak, M. N., Chivkunova, O. B., Solovchenko, A. E., & Naqvi, K. R. (2008). Light absorption by anthocyanins in juvenile, stressed, and senescing leaves. Journal of Experimental Botany, 59(14), 3903-3911.

Naing, A. H., & Kim, C. K. (2021). Abiotic stress‐induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiologia Plantarum, 172(3), 1711-1723.

Naing, A. H., Park, K. I., Ai, T. N., Chung, M. Y., Han, J. S., Kang, Y.-W., Lim, K. B., & Kim, C. K. (2017). Overexpression of snapdragon Delila (Del) gene in tobacco enhances anthocyanin accumulation and abiotic stress tolerance. BMC plant biology, 17(1), 1-14.

Pareek, S., Sagar, N. A., Sharma, S., Kumar, V., Agarwal, T., González-Aguilar, G. A., & Yahia, E. M. (2017). Chlorophylls: Chemistry and biological functions. Fruit and Vegetable Phytochemicals, 29, 269.

Park, M.-H., Sangwanangkul, P., & Baek, D.-R. (2018). Changes in carotenoid and chlorophyll content of black tomatoes (Lycopersicone sculentum L.) during storage at various temperatures. Saudi journal of biological sciences, 25(1), 57-65.

Prakash, M., & Ramachandran, K. (2000). Effects of moisture stress and anti-transpirants on leaf chlorophyll, soluble protein and photosynthetic rate in brinjal plants. Journal of Agronomy and Crop Science, 184(3), 153-156.

Robinson, G. M., & Robinson, R. (1931). A survey of anthocyanins. I. Biochemical Journal, 25(5), 1687.

Santos-Buelga, C., Mateus, N., & De Freitas, V. (2014). Anthocyanins. Plant pigments and beyond. In (Vol. 62, pp. 6879-6884): ACS Publications.

Scheer, H. (2006). An overview of chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications. Chlorophylls and bacteriochlorophylls, 1-26.

Strack, D., & Wray, V. (2017). The anthocyanins. In The flavonoids (pp. 1-22). Routledge.

Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306-312.

Tang, Y., Ma, X., Li, M., & Wang, Y. (2020). The effect of temperature and light on strawberry production in a solar greenhouse. Solar Energy, 195, 318-328.

Turturică, M., OANCEA, A., Râpeanu, G., & Bahrim, G. (2015). Anthocyanins: naturally occuring fruit pigments with functional properties. Annals of the University Dunarea de Jos of Galati Fascicle VI--Food Technology, 39(1).

Wang, F., Zhu, H., Kong, W., Peng, R., Liu, Q., & Yao, Q. (2016). The Antirrhinum AmDEL gene enhances flavonoids accumulation and salt and drought tolerance in transgenic Arabidopsis. Planta, 244(1), 59-73.

Zhu, H., Zhang, T.-J., Zheng, J., Huang, X.-D., Yu, Z.-C., Peng, C.-L., & Chow, W. S. (2018). Anthocyanins function as a light attenuator to compensate for insufficient photoprotection mediated by nonphotochemical quenching in young leaves of Acmena acuminatissima in winter. Photosynthetica, 56(1), 445-454.