next up previous
Siguiente: Oscilador armónico Subir: Partícula en un campo Anterior: Partícula en un campo

Solución

$\displaystyle S[{{\boldsymbol{x}}}(t)]= \int dt \left( \frac{1}{2}m\dot{{\bolds...
...bol{A}}}({{\boldsymbol{x}}},t) -q\phi({{\boldsymbol{x}}},t) \right) = \int dt L$ (3.2)

a)

$\displaystyle {{\boldsymbol{p}}}=\frac{\partial L}{\partial {{\boldsymbol{x}}}}...
...dot{{\boldsymbol{x}}} + \frac{q}{c}{{\boldsymbol{A}}}({{\boldsymbol{x}}},t) \,.$ (3.3)

Usamos las ecuaciones de Euler-Lagrange

$\displaystyle \frac{d{{\boldsymbol{p}}}}{dt}=\frac{\partial L}{\partial {{\boldsymbol{x}}}} \,,$ (3.4)

$\displaystyle m\ddot x_i+ \frac{q}{c}(\partial_tA_i+\dot x_j\partial_jA_i) = \frac{q}{c}\dot x_j\partial_iA_j-q\partial_i\phi$ (3.5)

de donde

$\displaystyle m\ddot x_i=F_i= -q\partial_i\phi -\frac{q}{c} \partial_tA_i +\frac{q}{c}\dot x_j(\partial_iA_j-\partial_jA_i) \,.$ (3.6)

Teniendo en cuenta que

$\displaystyle E_i=-\partial_i\phi-\frac{1}{c} \partial_tA_i \,,\qquad B_i=\epsilon_{ijk}\partial_jA_k$ (3.7)

así como
$\displaystyle (\dot{{\boldsymbol{x}}}\times {{\boldsymbol{B}}})_i$ $\displaystyle =$ $\displaystyle \epsilon_{ijk}\dot x_jB_k=
\epsilon_{ijk}\dot x_j\epsilon_{k\ell ...
...
(\delta_{i\ell}\delta_{jm}-\delta_{im}\delta_{j\ell})\dot x_j\partial_\ell A_m$  
  $\displaystyle =$ $\displaystyle \dot x_j(\partial_i A_j-\partial_j A_i) \,,$ (3.8)

se obtiene la fuerza de Lorentz

$\displaystyle {{\boldsymbol{F}}}=q {{\boldsymbol{E}}}+\frac{q}{c}\dot{{\boldsymbol{x}}}\times {{\boldsymbol{B}}}$ (3.9)

b) Para obtener el hamiltoniano

$\displaystyle {{\boldsymbol{p}}}=m\dot{{\boldsymbol{x}}}+\frac{q}{c}{{\boldsymb...
...{\boldsymbol{x}}}=\frac{1}{m}({{\boldsymbol{p}}}-\frac{q}{c}{{\boldsymbol{A}}})$ (3.10)


$\displaystyle H$ $\displaystyle =$ $\displaystyle \dot{{\boldsymbol{x}}}{{\boldsymbol{p}}}-L$  
  $\displaystyle =$ $\displaystyle \frac{1}{m}({{\boldsymbol{p}}}-\frac{q}{c}{{\boldsymbol{A}}}){{\b...
...1}{m}({{\boldsymbol{p}}}-\frac{q}{c}{{\boldsymbol{A}}}){{\boldsymbol{A}}}+q\phi$  
  $\displaystyle =$ $\displaystyle \frac{1}{2m} ({{\boldsymbol{p}}}-\frac{q}{c}{{\boldsymbol{A}}})^2 +q\phi
\,.$ (3.11)


next up previous
Siguiente: Oscilador armónico Subir: Partícula en un campo Anterior: Partícula en un campo
salcedo 2013-02-08