Proposición 14

Si una primera magnitud guarda con una segunda la misma razón que una tercera con una cuarta y la primera es mayor que la tercera, la segunda será también mayor que la cuarta, y si es igual, será igual, y si menor, menor.

Sea pues AB=CD, y sea A ⋛ C. Digo que también B ⋛ D.

Pues como A > C y B es otra magnitud, tomada al azar, entonces AB>CB [Prop. V.8]. Pero AB=CD; entonces CD>CB [Prop. V.13]. Así pues, D < B [Prop. V.10]; de modo que B > D.

Supongamos ahora que A=C. Entonces AB=CB [Prop. V.7], y como AB=CD, entonces CD=CB [Prop. V.11]. Así, D=B [Prop. V.9].

Finalmente, supongamos que A < C, entonces C > A, luego CB>AB [Prop. V.8]. Pero AB=CD; entonces CB>CD [Prop. V.13]. Así pues, B < D [Prop. V.10].

Q. E. D.