Proposición 15

Las partes guardan la misma razón entre sí que sus mismos múltiplos, tomados en el orden correspondiente.

Sea pues AB=nC el mismo múltiplo de C que DE=nF de F . Digo que como CF=ABDE.

Pues dado que AB es el mismo múltiplo de C que DE de F, entonces, cuantas magnitudes iguales a C hay en AB, otras tantas habrá iguales a F en DE. Divídase AB en las magnitudes AG, GH, HB iguales a C , y DE en las magnitudes DK, KL, LE iguales a F ; entonces el número de las magnitudes AG, GH, HB será igual al número de las magnitudes DK, KL, LE. Y puesto que AG=GH=HB y DK=KL=LE, entonces, AGDK=GHKL=HBLE [Prop. V.7]. Por tanto, AGDK=AG+GH+HBDK+KL+LE=ABDE [Prop. V.12]. Ahora bien, AG = C, y DK = F; luego, CF=ABDE.

Q. E. D.